Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps

Abstract

In muscle, the myosin head (‘crossbridge’) performs the ‘working stroke’, in which ATP is hydrolysed to generate the sliding of actin and myosin filaments. The myosin head consists of a globular motor domain and a long lever-arm domain. The ‘lever-arm hypothesis’1,2,3,4,5 predicts that during the working stroke, the lever-arm domain tilts against the motor domain, which is bound to actin in a fixed orientation. To detect this working stroke in operation, we constructed fusion proteins by connecting Aequorea victoria green fluorescent protein and blue fluorescent protein6,7,8 to the amino and carboxyl termini of the motor domain of myosin II of Dictyostelium discoideum, a soil amoeba, and measured the fluorescence resonance energy transfer between the two fluorescent proteins. We show here that the carboxy-terminal fluorophore swings at the isomerization step of the ATP hydrolysis cycle, and then swings back at the subsequent step in which inorganic phosphate is released, thereby mimicking the swing of the lever arm. The swing at the phosphate-release step may correspond to the working stroke, and the swing at the isomerization step to the recovery stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams of the domain of chimaeras made from the incorporation of fluorescent proteins into S1dC.
Figure 2: The relationship of FRET emission spectra in chimaeric S1dC to the hydrolysis of ATP.
Figure 3: Time course of changes in the FRET-induced emission from GFP.
Figure 4: Stereo views of a complex of an actin filament and a myosin head, prepared by using program O (ref. 26).

Similar content being viewed by others

References

  1. Cooke, R. The mechanism of muscle contraction. CRC Crit. Rev. Biochem. 21, 53–118 (1986).

    Article  CAS  Google Scholar 

  2. Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Spudich, J. A. How molecular motors work. Nature 372, 515–518 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Holmes, K. C. The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7, 112–118 (1997).

    Article  Google Scholar 

  6. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    Article  CAS  Google Scholar 

  7. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  Google Scholar 

  8. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Warrick, H. M., DeLozanne, A., Leinwand, L. A. & Spudich, J. A. Conserved protein domains in a myosin heavy chain gene from Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 83, 9433–9437 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Itakura, S. et al. Force-generating domain of myosin motor. Biochem. Biophys. Res. Commun. 196, 1504–1510 (1993).

    Article  CAS  Google Scholar 

  11. Gulick, A. M., Bauer, C. B., Thoden, J. B. & Rayment, I. X-ray structures of the MgADP, MgATPγS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36, 11619–11628 (1997).

    Article  CAS  Google Scholar 

  12. Smith, C. A. & Rayment, I. X-ray structure of te magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.2 Å resolution. Biochemistry 35, 5404–5417 (1996).

    Article  CAS  Google Scholar 

  13. Fisher, A. J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFxand MgADP.AlF4. Biochemistry 34, 8960–8972 (1995).

    Article  CAS  Google Scholar 

  14. Lymn, R. W. & Taylor, E. W. Mechanism of adenosine triphosphate hydrolysis of actomyosin. Biochemistry 10, 4617–4624 (1971).

    Article  CAS  Google Scholar 

  15. Bagshaw, C. R. & Trentham, D. R. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem. J. 141, 331–349 (1974).

    Article  CAS  Google Scholar 

  16. Sasaki, N., Shimada, T. & Sutoh, K. Mutational analysis of the switch II loop of Dictyostelium myosin II. J. Biol. Chem. 273, 20334–20340 (1998).

    Article  CAS  Google Scholar 

  17. Kuhlman, P. A. & Bagshaw, C. R. ATPase kinetics of the Dictyostelium discoideum myosin II motor domain. J. Muscle. Res. Cell. Motil. 19, 491–504 (1998).

    Article  CAS  Google Scholar 

  18. Werber, M. M., Peyser, Y. M. & Muhlrad, A. Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes. Biochemistry 31, 7190–7197 (1992).

    Article  CAS  Google Scholar 

  19. Maruta, S., Henry, G. D., Sykes, B. D. & Ikebe, M. Formation of the stable myosin–ADP–aluminum fluoride and myosin–ADP–beryllium fluoride complexes and their analysis using 19F NMR. J. Biol. Chem. 268, 7093–7100 (1993).

    CAS  Google Scholar 

  20. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Shimada, T., Sasaki, N., Ohkura, R. & Sutoh, K. Alanine scanning mutagenesis of the switch I region in the ATPase site of Dictyostelium discoideum myosin II. Biochemistry 36, 14037–14043 (1997).

    Article  CAS  Google Scholar 

  22. Clegg, R. M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  23. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  Google Scholar 

  24. Miki, M. Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374. Biochemistry 30, 10878–10884 (1991).

    Article  CAS  Google Scholar 

  25. Yasunaga, T. & Wakabayashi, T. Extensible and object-oriented system Eos supplies a new environment for image analysis of electron micrographs of macromolecules. J. Struct. Biol. 116, 155–160 (1996).

    Article  CAS  Google Scholar 

  26. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Oiwa for Cy3 nucleotides, M. Miki for discussions about the FRET experiments, and M. Steward, C.Bagshaw and P. Kuhlman for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Sutoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Yasunaga, T., Ohkura, R. et al. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383 (1998). https://doi.org/10.1038/24640

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24640

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing