Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly

Abstract

Chirality at the supramolecular level involves the non-symmetric arrangement of molecular components in a non-covalent assembly1,2. Supramolecular chirality is abundant in biology, for example in the DNA double helix3, the triple helix of collagen4 and the α-helical coiled coil of myosin5. These structures are stabilized by inter-strand hydrogen bonds, and their handedness is determined by the configuration of chiral centres in the nucleotide or peptide backbone. Synthetic hydrogen-bonded assemblies have been reported that display supramolecular chirality in solution6,7,8 or in the solid state9,10,11,12. Complete asymmetric induction of supramolecular chirality—the formation of assemblies of a single handedness—has been widely studied in polymeric superstructures13,14. It has so far been achieved in inorganic metal-coordinated systems15,16,17, but not in organic hydrogen-bonded assemblies18,19,20. Here we describe the diastereoselective assembly of enantio-pure calix[4]arene dimelamines and 5,5-diethylbarbituric acid (DEB) into chiral hydrogen-bonded structures of one handedness. The system displays complete enantioselective self-resolution: the mixing of homomeric assemblies (composed of homochiral units) with opposite handedness does not lead to the formation of heteromeric assemblies. The non-covalent character of the chiral assemblies, the structural simplicity of the constituent building blocks and the ability to control the assembly process by means of peripheral chiral centres makes this system promising for the development of a wide range of homochiral supramolecular materials or enantioselective catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representations and molecular structure of the nine-component hydrogen bonded assemblies 13·DEB653·DEB6, 63·CYA6 and 73·CYA6 with their individual components.
Figure 2: Characterization of chiral non-covalent assemblies (M)-23·DEB6 and (P)-33·DEB6 by 1H NMR spectroscopy.
Figure 3: Characterization of assemblies 23·DEB653·DEB6 by CD and ultraviolet spectroscopy.
Figure 4: Characterization of mixed assemblies 23−n6n·DEB6 (n = 0–3) by 1H NMR and CD spectroscopy.
Figure 5: Characterization of mixed assemblies 23−n3n·DEB6 (n = 0–3) by 1H NMR and CD spectroscopy.
Figure 6: Isomeric distribution of hydrogen-bonded assemblies from 1, (R,R)-2, and (R,S)-7 with HexCYA as determined by 1H NMR spectroscopy.

Similar content being viewed by others

References

  1. Havinga, E. Spontaneous formation of optically active substances. Biochim. Biophys. Acta 13, 171–174 (1954).

    Article  CAS  Google Scholar 

  2. Lehn, J.-M. Supramolecular Chemistry, Concepts and Perspectives(VCH, Weinheim, (1995).

    Book  Google Scholar 

  3. Dickerson, R. E. et al. The anatomy of A-, B-, and Z-DNA. Science 216, 475–485 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Okuyama, K., Okuyama, K., Arnott, S., Takanyanagi, M. & Kakudo, M. Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10. J. Mol. Biol. 152, 427–443 (1981).

    Article  CAS  Google Scholar 

  5. Warrick, H. M. & Spudich, J. A. Myosin: structure and function in cell motility. Annu. Rev. Cell Biol. 3, 379–422 (1987).

    Article  CAS  Google Scholar 

  6. Seto, C. T. & Whitesides, G. M. Molecular self-assembly through hydrogen bonding: supramolecular aggregates based on the cyanuric acid.melamine lattice. J. Am. Chem. Soc. 115, 905–916 (1993).

    Article  CAS  Google Scholar 

  7. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Conn, M. M. & Rebek, J. J Self-assembling capsules. Chem. Rev. 97, 1647–1668 (1997).

    Article  CAS  Google Scholar 

  9. Geib, S. J., Vincent, C., Fan, E. & Hamilton, A. D. Aself-assembling, hydrogen-bonded helix. Angew. Chem. Int. Edn Engl. 32, 119–121 (1993).

    Article  Google Scholar 

  10. Hanessian, S., Gomtsyan, A., Simard, M. & Roelens, S. Molecular recognition and self-assembly by “weak” hydrogen bonding: unprecedented supramolecular helicate structures from diamine/diol motifs. J. Am. Chem. Soc. 116, 4495–4496 (1994).

    Article  CAS  Google Scholar 

  11. Saurez, M., Branda, N., Lehn, J.-M., De Cian, A. & Fischer, J. Supramolecular chirality: chiral hydrogen-bonded supermolecules from achiral molecular components. Helv. Chim. Acta 81, 1–13 (1998).

    Article  Google Scholar 

  12. Atwood, J. L. & MacGillivray, L. R. Achiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997).

    Article  ADS  Google Scholar 

  13. Rowan, A. E. & Nolte, R. J. M. Helical molecular programming. Angew. Chem. Int. Edn Engl. 37, 63–68 (1998).

    Article  CAS  Google Scholar 

  14. Palmans, A. R. A., Vekemans, J. A. J. M., Havinga, E. E. & Meijer, E. W. Sergeants-and-soldiers principle in chiral columnar stacks of disc-shaped molecules with C3symmetry. Angew. Chem. Int. Edn Engl. 36, 2648–2651 (1997).

    Article  CAS  Google Scholar 

  15. Zarges, W., Hall, J., Lehn, J.-M. & Bolm, C. Helicity induction in helicate self-organisation from chiral tris(bipyridine) ligand strands. Helv. Chim. Acta 74, 1843–1852 (1991).

    Article  CAS  Google Scholar 

  16. Woods, C. R., Benaglia, M., Cozzi, F. & Siegel, J. S. Enantioselective synthesis of copper(I) bipyridine based helicates by chiral templating of secondary structure: transmission of stereochemistry on the nanometer scale. Angew. Chem. Int. Edn Engl. 35, 1830–1833 (1996).

    Article  CAS  Google Scholar 

  17. Mamula, O., Von Zelewsky, A. & Bernardinelli, G. Completely stereospecific self-assembly of a circular helicate. Angew. Chem. Int. Edn Engl. 37, 289–293 (1998).

    Article  Google Scholar 

  18. Castellano, R. K., Kim, B. H. & Rebek, J. J Chiral capsules: asymmetric binding in calixarene-based dimers. J. Am. Chem. Soc. 119, 12671–12672 (1997).

    Article  CAS  Google Scholar 

  19. Qiao, S., Choi, I. S. & Whitesides, G. M. Observation of diastereomers of the hydrogen-bonded aggregate Hub(M)3.3CA using 1H NMR spectroscopy when CA is an optically-active isocyanuric acid. J. Org. Chem. 62, 2619–2621 (1997).

    Article  Google Scholar 

  20. Rivera, J. M., Martin, T. & Rebek, J. J Chiral spaces: dissymmetric capsules through self-assembly. Science 279, 1021–1023 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Vreekamp, R. H., Van Duynhoven, J. P. M., Hubert, M., Verboom, W. & Reinhoudt, D. N. Molecular boxes based on calix[4]arene double rosettes. Angew. Chem. Int. Edn Engl. 35, 1215–1218 (1996).

    Article  CAS  Google Scholar 

  22. Timmerman, P. et al. Noncovalent assembly of functional groups on calix[4]arene molecular boxes. Chem. Eur. J. 3, 1823–1832 (1997).

    Article  CAS  Google Scholar 

  23. Crego Calama, M., Fokkens, R., Nibbering, N. M. M., Timmerman, P. & Reinhoudt, D. N. Libraries of non-covalent hydrogen bonded assemblies; combinatorial synthesis of supramolecular systems. Chem. Commun. 1021–1022 (1998).

  24. Green, M. M. et al. Ahelical polymer with a cooperative response to chiral information. Science 268, 1860–1866 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Russell, K. C., Lehn, J.-M., Kyritsakas, N., DeCian, A. & Fischer, J. Self-assembly of hydrogen-bonded supramolecular strands from complementary melamine and barbiturate components with chiral selection. New J. Chem. 22, 123–128 (1998).

    Article  CAS  Google Scholar 

  26. Gulik-Krzywicki, T., Fouquey, C. & Lehn, J.-M. Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular recognition-directed self-assembly from complementary chiral components. Proc. Natl Acad. Sci. USA 90, 163–167 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Prelog, V. & Helmchen, G. Basis of the CIP system and proposal for a revision. Angew. Chem. Int. Edn Engl. 21, 567–594 (1982).

    Article  Google Scholar 

  28. Jolliffe, K. A. et al. Characterization of supramolecular hydrogen-bonded assemblies by MALDI-TOF mass spectrometry after Ag+-labelling. Angew. Chem. Int. Edn Engl. 37, 1294–1297 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Hulst for the 2D ROESY experiments, R. Fokkens and N. M. M. Nibbering for the MALDI-TOF measurements, and E. W. Meijer for providing the use of the CD equipment. This work was supported by the Council for Chemical Sciences (CW) and the Technology Foundation (STW) of the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Reinhoudt.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prins, L., Huskens, J., de Jong, F. et al. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. Nature 398, 498–502 (1999). https://doi.org/10.1038/19053

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19053

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing