Skip to main content
Log in

Macroscopic impacts of cloud and precipitation processes in shallow convection

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper presents application of the EULAG model combined with a sophisticated double-moment warm-rain microphysics scheme to the model intercomparison case based on RICO (Rain in Cumulus over Ocean) field observations. As the simulations progress, the cloud field gradually deepens and a relatively sharp temperature and moisture inversions develop in the lower troposphere. Two contrasting aerosol environments are considered, referred to as pristine and polluted, together with two contrasting subgridscale mixing scenarios, the homogeneous and the extremely inhomogeneous mixing. Pristine and polluted environments feature mean cloud droplet concentrations around 40 and 150 mg−1, respectively, and large differences in the rain characteristics. Various measures are used to contrast evolution of macroscopic cloud field characteristics, such as the mean cloud fraction, the mean cloud width, or the height of the center of mass of the cloud field, among others. Macroscopic characteristics appear similar regardless of the aerosol characteristics or the homogeneity of the subgrid-scale mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht, B.A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science 245,4923, 1227–1230, DOI: 10.1126/science.245.4923.1227.

    Article  Google Scholar 

  • Arabas, S., H. Pawlowska, and W.W. Grabowski (2009), Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli during RICO, Geophys. Res. Lett. 36, L11803, DOI: 10.1029/2009GL038257.

    Article  Google Scholar 

  • Bony, S., and J.-L. Dufresne (2005), Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett. 32, L20806, DOI: 10.1029/2005GL023851.

    Article  Google Scholar 

  • Brenguier, J.-L., and W.W. Grabowski (1993), Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework, J. Atmos. Sci. 50,1, 120–136, DOI: 10.1175/1520-0469(1993)050〈0120:CEACDS〉2.0.CO;2.

    Article  Google Scholar 

  • Chosson, F., J.-L. Brenguier, and M. Schröder (2004), Radiative impact of mixingprocesses in boundary layer clouds. In: Proc. 14 Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Association of Meteorology and Atmospheric Sciences, 371–374.

  • Chosson, F., J.-L. Brenguier, and L. Schüller (2007), Entrainment-mixing and radiative transfer simulation in boundary-layer clouds, J. Atmos. Sci. 64,7, 2670–2682, DOI: 10.1175/JAS3975.1.

    Article  Google Scholar 

  • Gerber, H.E., G.M. Frick, J.B. Jensen, and J.G. Hudson (2008), Entrainment, mixing, and microphysics in trade-wind cumulus, J. Meteor. Soc. Japan 86A, 87–106, DOI: 10.2151/jmsj.86A.87.

    Article  Google Scholar 

  • Grabowski, W.W. (2006), Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium, J. Climate 19,18, 4664–4682, DOI: 10.1175/JCLI3857.1.

    Article  Google Scholar 

  • Grabowski, W.W., and T.L. Clark (1991), Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions, J. Atmos. Sci. 48,4, 527–546, DOI: 10.1175/1520-0469(1991)048〈0527:CIIRTC〉2.0.CO;2.

    Article  Google Scholar 

  • Grabowski, W.W., and T.L. Clark (1993), Cloud-environment interface instability, Part II: Extension to three spatial dimensions, J. Atmos. Sci. 50,4, 555–573, DOI: 10.1175/1520-0469(1993)050〈0555:CEIIPI〉2.0.CO;2.

    Article  Google Scholar 

  • Grabowski, W.W., and P.K. Smolarkiewicz (1990), Monotone finite difference approximations to the advection-condensation problem, Mon. Weather Rev. 118,10, 2082–2098, DOI: 10.1175/1520-0493(1990)118〈2082: MFDATT〉2.0.CO;2.

    Article  Google Scholar 

  • Grabowski, W.W., and P.K. Smolarkiewicz (1996), Two-time-level semi-Lagrangian modeling of precipitating clouds, Mon. Weather Rev. 124,3, 487–497, DOI: 10.1175/1520-0493(1996)124〈0487:TTLSLM〉2.0.CO;2.

    Article  Google Scholar 

  • Grabowski, W.W., X. Wu, M.W. Moncrieff, and W.D. Hall (1998), Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension, J. Atmos. Sci. 55,21, 3264–3282, DOI: 10.1175/1520-0469(1998)055〈3264:CRMOCS〉2.0.CO;2.

    Article  Google Scholar 

  • Grabowski, W.W., P. Bechtold, A. Cheng, R. Forbes, C. Halliwell, M. Khairoutdinov, S. Lang, T. Nasuno, J. Petch, W.-K. Tao, R. Wong, X. Wu, and K.-M. Xu (2006), Daytime convective development over land: A model intercomparison based on LBA observations, Quart. J. Roy. Met. Soc. 132,615, 317–344, DOI: 10.1256/qj.04.147.

    Article  Google Scholar 

  • Koren, I., O. Altaratz, G. Feingold, Z. Levin, and T. Reisin (2009), Cloud’s Center of Gravity — a compact approach to analyze convective cloud development, Atmos. Chem. Phys. 9,1, 155–161, DOI: 10.5194/acp-9-155-2009.

    Article  Google Scholar 

  • Margolin, L.G., P.K. Smolarkiewicz, and Z. Sorbjan (1999), Large-eddy simulations of convective boundary layers using nonoscillatory differencing, Physica D 133,1–4, 390–397, DOI: 10.1016/S0167-2789(99)00083-4.

    Article  Google Scholar 

  • Morrison, H., and W.W. Grabowski (2007), Comparison of bulk and bin warm-rain microphysics models using a kinematic framework, J. Atmos. Sci. 64,8, 2839–2861, DOI: 10.1175/JAS3980.

    Article  Google Scholar 

  • Morrison, H., and W.W. Grabowski (2008), Modeling supersaturation and subgridscale mixing with two-moment bulk warm microphysics, J. Atmos. Sci. 65,3, 792–812, DOI: 10.1175/2007JAS2374.1.

    Article  Google Scholar 

  • Pincus, R., and M.B. Baker (1994), Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature 372, 250–252, DOI: 10.1038/372250a0.

    Article  Google Scholar 

  • Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37,9, 1193–1207, DOI: 10.1016/j.compfluid.2007.12.001.

    Article  Google Scholar 

  • Siebesma, A.P., C.S. Bretherton, A. Brown, A. Chlond, J. Cuxart, P.G. Duynkerke, H. Jiang, M. Khairoutdinov, D. Lewellen, C.-H. Moeng, E. Sanchez, B. Stevens, and D.E. Stevens (2003), A large eddy simulation intercomparison study of shallow cumulus convection, J. Atmos. Sci. 60,10, 1201–1219, DOI: 10.1175/1520-0469(2003)60〈1201:ALESIS〉2.0.CO;2.

    Article  Google Scholar 

  • Slawinska, J., W.W. Grabowski, H. Pawlowska, and A.A. Wyszogrodzki (2008), Optical properties of shallow convective clouds diagnosed from a bulk-microphysics large-eddy simulation, J. Climate 21,7, 1639–1647, DOI: 10.1175/2007JCLI1820.1.

    Article  Google Scholar 

  • Slawinska, J., W.W. Grabowski, H. Pawlowska, and H. Morrison (2011), Droplet activation and mixing in large-eddy simulation of a shallow cumulus field, J. Atmos. Sci., DOI: 10.1175/JAS-D-11-054.1

  • Smolarkiewicz, P.K., and L.G. Margolin (1997), On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows, Atmos. Ocean Sp. 35,1, 127–152.

    Article  Google Scholar 

  • Stevens, B. (2007), On the growth of layers of nonprecipitating cumulus convection, J. Atmos. Sci. 64,8, 2916–2931, DOI: 10.1175/JAS3983.1.

    Article  Google Scholar 

  • Stevens, B., and A. Seifert (2008), Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection, J. Meteor. Soc. Japan 86A, 143–162, DOI: 10.2151/jmsj.86A.143.

    Article  Google Scholar 

  • Stevens, B., A.S. Ackerman, B.A. Albrecht, A.R. Brown, A. Chlond, J. Cuxart, P.G. Duynkerke, D.C. Lewellen, M.K. Macvean, R.A.J. Neggers, E. Sanchez, A.P. Siebesma, and D.E. Stevens (2001), Simulations of trade wind cumuli under a strong inversion, J. Atmos. Sci. 58,14, 1870–1891, DOI: 10.1175/1520-0469(2001)058〈1870:SOTWCU〉2.0.CO;2.

    Article  Google Scholar 

  • Twomey, S. (1974), Pollution and the planetary albedo, Atmos. Environ. 8,12, 1251–1256, DOI: 10.1016/0004-6981(74)90004-3.

    Article  Google Scholar 

  • Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci. 34,7, 1149–1152, DOI: 10.1175/1520-0469(1977)034〈1149: TIOPOT〉2.0.CO;2.

    Article  Google Scholar 

  • van Zanten, M.C., B. Stevens, L. Nuijens, A.P. Siebesma, A. Ackerman, F. Burnet, A. Cheng, F. Couvreux, H. Jiang, M. Khairoutdinov, Y. Kogan, D.C. Lewellen, D. Mechem, K. Nakamura, A. Noda, B.J. Shipway, J. Slawinska, S. Wang, and A. Wyszogrodzki (2011), Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO, J. Adv. Model. Earth Syst. 3, M06001, DOI: 10.1029/2011MS000056.

    Article  Google Scholar 

  • Warner, J. (1955), The water content of cumuliform cloud, Tellus 7,4, 449–457, DOI: 10.1111/j.2153-3490.1955.tb01183.x.

    Article  Google Scholar 

  • Warner, J. (1968), Areduction in rainfall associated with smoke from sugar-cane fires — An inadvertent weather modification?, J. Appl. Meteor. 7,2, 247–251, DOI: 10.1175/1520-0450(1968)007〈0247:ARIRAW〉2.0.CO;2.

    Article  Google Scholar 

  • Xue, H., and G. Feingold (2006), Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects, J. Atmos. Sci. 63,6, 1605–1622, DOI: 10.1175/JAS3706.1.

    Article  Google Scholar 

  • Zhao, M., and P.H. Austin (2005a), Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport, J. Atmos. Sci. 62,5, 1269–1290, DOI: 10.1175/JAS3414.1.

    Article  Google Scholar 

  • Zhao, M., and P.H. Austin (2005b), Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics, J. Atmos. Sci. 62,5, 1291–1310, DOI: 10.1175/JAS3415.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech W. Grabowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabowski, W.W., Slawinska, J., Pawlowska, H. et al. Macroscopic impacts of cloud and precipitation processes in shallow convection. Acta Geophys. 59, 1184–1204 (2011). https://doi.org/10.2478/s11600-011-0038-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0038-9

Key words

Navigation