Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 30, 2019

Synthesis and crystal structure of a series of stoichiometric (n)-ITB molybdenum-bronze oxides containing trivalent arsenic

  • Meriem Goudjil EMAIL logo , Enrique Gutiérrez-Puebla , Paola Bonazzi , Eugenio Lunedei , Djillali Mezaoui and Luca Bindi

Abstract

A series of six new single crystals of fully stoichiometric As3+-bearing Mo-oxides and partially W-substituted Mo-oxides with formula AsmO(Mo1−xWxO3)p (m = 1, 2; p = 5, 7, 9, 10 and 11 and 0 ≤ x ≤ 0.6) was successfully grown using vapor-phase transport in vacuo. The crystal structures were determined using single-crystal X-ray diffraction data. All these compounds exhibit acentric orthorhombic symmetry with Z = 2, and belong to the so-called (n)-ITB (intergrowth tungsten bronzes) family, with n = 2, 3, 4 and 5. The six (n)-ITB phases have the following formulae: (2)-AsMo5O16 (Pm 2a), (2)-As2Mo10O31 (Pma 2), (3)-AsMo7O22 (Pmn 21), (3)-As(Mo5.53W1.47)O22 (Pmn 21), (4)-As(Mo4.33W4.67)O28 (Pm 2a) and (5)-As(W6.63Mo4.37)O34 (Pmn 21). Their structures consist of vertex-sharing MO6 octahedral units (with M either Mo or Mo/W) connected so as to form three-dimensional frameworks. Such frameworks consist of perovskite tungsten bronzes (PTB) type slabs, from 2- to 5-octahedra wide, intergrown with single hexagonal tungsten bronzes (HTB) type slabs, stacked up to form pseudo-hexagonal tunnels along the a-axis. As3+ and additional oxygen atoms are located in off-center positions inside the tunnels, forming As–O bonds with peculiar arrangements. In particular, we obtained the first examples of structures where, besides the usual AsO3E distorted pyramidal geometry, As3+ adopts AsO4E coordination with a seesaw configuration.

Acknowledgements

The authors acknowledge Thierry Roisnel for the X-ray single-crystal diffraction measurements at CDIFX, Centre de DIFfractométrie des rayons X, University of Rennes1, Rennes (France) and CRIST, Centro di Studi per la Cristallografia Strutturale, University of Firenze, Firenze (Italy). Dr. Vittorio Morandi, CNR-IMM, Consiglio Nazionale delle Ricerche-Istituto per la Microelecttronica e Microsistemi, Bologna (Italy), is gratefully acknowledged for his kind contribution with Scanning Electron Microscopy.

The work of M. Goudjil was financially supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the National Exceptional Program (PNE) (Grant number: 306/PNE: 2016/17) and by the Italian Ministry of Foreign Affairs and International Cooperation (MAECI Grant 2018/19).

The CCDC deposition numbers

Compound (A) – CSD n: 1914483

Compound (B) – CSD n: 1914491

Compound (C) – CSD n: 1914466

Compound (D) – CSD n: 1914524

Compound (E) – CSD n: 1914528

Compound (F) – CSD n: 1914537

References

[1] M. Greenblatt, Molybdenum oxide bronzes with quasi-low-dimensional properties. Chem. Rev.1988, 88, 31.10.1021/cr00083a002Search in Google Scholar

[2] M. Greenblatt, Monophosphate tungsten bronzes. A new family of low-dimensional, charge-density-wave oxides. Acc. Chem. Res.1996, 29, 219.10.1021/ar950157Search in Google Scholar

[3] A. Soultati, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, T. Bein, J. M. Feckl, S. Gardelis, M. Fakis, S. Kennou, P. Falaras, T. Stergiopoulos, N. A. Stathopoulos, D. Davazoglou, P. Argitis, M. Vasilopoulou, Solution-processed hydrogen molybdenum bronzes as highly conductive anode interlayers in efficient organic photovoltaics. Adv. Energy Mater.2014, 4, 1300896.10.1002/aenm.201300896Search in Google Scholar

[4] V. Kumar, X. Wang, P. S. Lee, Formation of hexagonal-molybdenum trioxide (h-MoO3) nanostructures and their pseudocapacitive behavior. Nanoscale2015, 7, 11777.10.1039/C5NR01505GSearch in Google Scholar

[5] J. Wang, J. Zhang, B. Meng, B. Zhang, Z. Xie, L. Wang, Facile preparation of molybdenum bronzes as an efficient hole extraction layer in organic photovoltaics. ACS Appl. Mater. Interfaces2015, 7, 13590.10.1021/acsami.5b02997Search in Google Scholar PubMed

[6] J. Tong, Y. Jiang, N. Song, S. Lim, O. Zi, A. Lennon, Hydrogen molybdenum bronzes for hole transport layers on crystalline silicon solar cells. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016.10.1109/PVSC.2016.7750209Search in Google Scholar

[7] A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany, F. Nüesch, Hydrogen reduction of molybdenum oxide at room temperature. Sci. Rep. UK2017, 7, 40761.10.1038/srep40761Search in Google Scholar PubMed PubMed Central

[8] H. Zhang, H. Wang, Y. Yang, C. Hu, Y. Bai, T. Zhang, W. Chen, S. Yang, Hx MoO3−y nanobelts: an excellent alternative to carbon electrodes for high performance mesoscopic perovskite solar cells. J. Mater. Chem. A2019, 7, 1499.10.1039/C8TA10892GSearch in Google Scholar

[9] J. Graham, A. Wadsley, The crystal structure of the blue potassium molybdenum bronze, K0.28MoO3. Acta Crystallogr.1966, 20, 93.10.1107/S0365110X66000173Search in Google Scholar

[10] W. Schutte, J. De Boer, The incommensurately modulated structures of the blue bronzes K0.3MoO3 and Rb0.3MoO3. Acta Crystallogr. B1993, 49, 579.10.1107/S0108768192006578Search in Google Scholar

[11] M. Ganne, A. Boumaza, M. Dion, J. Dumas, The blue bronze Tl0.30MoO3 structure and physical properties. Mater Res. Bull.1985, 20, 1297.10.1016/0025-5408(85)90124-2Search in Google Scholar

[12] R. Xiong, J. Shi, Q. Xiao, W. Tang, H. Liu, D. Tian, Infrared and EPR studies of the red potassium molybdenum bronze K0.33MoO3. J. Mater. Sci.2001, 36, 5511.10.1023/A:1012466622001Search in Google Scholar

[13] M. H. Whangbo, M. Evain, E. Canadell, M. Ganne, Structural origin of semiconducting properties of the molybdenum red bronzes A0.33MoO3 (A=potassium, rubidium, cesium, thallium). Inorg. Chem.1989, 28, 267.10.1021/ic00301a022Search in Google Scholar

[14] H.-J. Lunk, H. Hartl, M. A. Hartl, M. J. Fait, I. G. Shenderovich, M. Feist, T. A. Frisk, L. L. Daemen, D. Mauder, R. Eckelt, “Hexagonal Molybdenum Trioxide” known for 100 years and still a fount of new discoveries. Inorg. Chem.2010, 49, 9400.10.1021/ic101103gSearch in Google Scholar PubMed

[15] T. Bither, J. Gillson, H. Young, Synthesis of molybdenum and tungsten bronzes at high pressure. Inorg. Chem.1966, 5, 1559.10.1021/ic50043a020Search in Google Scholar

[16] A. Hussain, L. Kihlborg, Intergrowth tungsten bronzes. Acta Crystallogr. A1976, 32, 551.10.1107/S0567739476001216Search in Google Scholar

[17] S. L. Lawton, C. J. Fuhrmeister, R. G. Haas, C. S. Jarman, F. G. Lohmeyer, Stereochemical consequences of electron lone pairs. Examination of certain sulfosalts and chelates of trivalent arsenic, antimony, and bismuth and the crystal and molecular structure of bismuth (III) O,O′-diisopropylphosphorodithioate, Bi[(i-C3H7O)2PS2]3. Inorg. Chem.1974, 13, 135.10.1021/ic50131a026Search in Google Scholar

[18] W. J. Vickaryous, R. Herges, D. W. Johnson, Arsenic–π interactions stabilize a self-assembled As2L3 supramolecular complex. Angew. Chem. Int. Ed. Engl.2004, 43, 5831.10.1002/anie.200461011Search in Google Scholar PubMed

[19] P. A. Guńka, M. Dranka, J. Piechota, G. Z. Żukowska, A. Zalewska, J. Zachara, As2O3 polymorphs: theoretical insight into their stability and ammonia templated claudetite II crystallization. Cryst. Growth Des.2012, 12, 5663.10.1021/cg3011579Search in Google Scholar

[20] G. Sheldrick, SADABS Bruker Axs Inc, Madison, Wisconsin, USA 2007.Search in Google Scholar

[21] L. J. Farrugia, WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr.2012, 45, 849.10.1107/S0021889812029111Search in Google Scholar

[22] G. Sheldrick, SHELX-97, Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.Search in Google Scholar

[23] A. Hussain, L. Kihlborg, Intergrowth tungsten bronzes. Acta Crystallogr. A1976, 32, 551.10.1107/S0567739476001216Search in Google Scholar

[24] M. Klingstedt, M. Sundberg, L. Eriksson, S. Haigh, A. Kirkland, D. Grüner, A. De Backer, S. Van Aert, O. Terasaki, Exit wave reconstruction from focal series of HRTEM images, single crystal XRD and total energy studies on Sbx WO3+y (x~0.11). Z. Krist-Cryst. Mater.2012, 227, 341.10.1524/zkri.2012.1517Search in Google Scholar

[25] P. Labbe, M. Goreaud, B. Raveau, J. Monier, Etude comparative des structures Mx WO3 de type bronze hexagonal. I. Analyse structurale des bronzes de composition M0.30WO3. Stéréochimie des éléments M=RbI, TlI et InI. Acta Crystallogr. B1978, 34, 1433.10.1107/S0567740878005841Search in Google Scholar

[26] M. Parmentier, C. Gleitzer, A. Courtois, J. Protas, Structure cristalline de Sb2Mo10O31. Acta Crystallogr. B1979, 35, 1963.10.1107/S0567740879008256Search in Google Scholar

[27] J. E. Iglesias, A. Castro, R. Enjalbert, J. Galy, Mixed valence oxide ((Sb,As)2O)Mo45+Mo66+O30: synthesis, crystal structure and physical properties. Solid State Sci.2004, 6, 799.10.1016/j.solidstatesciences.2004.04.002Search in Google Scholar

[28] J. Galy, G. Meunier, S. Andersson, A. Åström, Stéréochimie des Eléments Comportant des Paires Non Liées: Ge (II), As (III), Se (IV), Br (V), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III)(Oxydes, Fluorures et Oxyfluorures). J. Solid State Chem.1975, 13, 142.10.1016/0022-4596(75)90092-4Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2019-0018).


Received: 2019-04-14
Accepted: 2019-05-07
Published Online: 2019-05-30
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2019-0018/html
Scroll to top button