Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:01:19.679Z Has data issue: false hasContentIssue false

The Swedish Time Scale: A Potential Calibration Tool for the Radiocarbon Time Scale During the Late Weichselian

Published online by Cambridge University Press:  18 July 2016

Barbara Wohlfarth
Affiliation:
Department of Quaternary Geology, Lund University, Tornavägen 13, S-22363 Lund, Sweden
Svante Björck
Affiliation:
Geological Institute, Copenhagen University, ⊘ster Voldgade 10, DK-1350 Copenhagen, Denmark
Göran Possnert
Affiliation:
The Svedberg Laboratory, Uppsala University, Box 533, S-75121 Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Swedish Time Scale (STS) is a ca. 13,300-yr-long varve chronology that has been established for the Swedish east coast from >1000 overlapping clay-varve diagrams. We describe the present state of the STS and illustrate the application of this worldwide unique varve chronology for AMS radiocarbon measurements. The results are compared to other 14C-dated calendar-year chronologies: dendrochronology, laminated lake sediments and U/Th. Our data set agrees with the oldest part of the dendrochronological calibration curve, and with AMS 14C-dated lake lamination data and U/Th on corals down to ca. 12 ka calendar years bp. Further back in time, the AMS-dated part of the STS partly compares well with lake lamination chronologies and shows that the difference between 14C and calendar years decreases rapidly between 12,600 and 12,800 calendar years bp. Such a development seems to contrast with U/Th measurements on corals. We suggest that the cause for the divergence among three supposed calendar-year chronologies lies in the fact that the data points on the marine 14C-U/Th curve are more widely spaced in time than the tightly grouped set of terrestrial AMS 14C dates, and thus are not able to reflect short-term changes in atmospheric 14C. Therefore, we argue that the use of the pre-Holocene part of the calibration program is premature and inadvisable.

Type
III. Calibration of the 14C Time Scale
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Antevs, E. 1932 Korrelation av Europas och Nordamerikas senglaciala skeden. Geologiska Föreningens i Stockholm Förhandlingar 54(2): 191211.CrossRefGoogle Scholar
Anthony, R. S. 1977 Iron-rich rhytmically laminated sediments in Lake of the Clouds, northeastern Minnesota. Limnology and Oceanography and Oceanography 22: 4554.CrossRefGoogle Scholar
Bard, E., Arnold, M., Fairbanks, R. G. and Hamelin, B. 1993 230Th-234U and 14C ages obtained by mass spectrometry on corals. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 191199.CrossRefGoogle Scholar
Berglund, B. E., Bergsten, H., Björck, S., Kolstrup, E., Lemdahl, G. and Norberg, K. 1994 Late Weichselian environmental change in southern Sweden and Denmark. Journal of Quaternary Science 9(2): 127132.CrossRefGoogle Scholar
Birks, H. J. B. and Gordon, A. D. 1985 Numerical Methods in Quaternary Pollen Analysis. Academic Press, London: 317 p.Google Scholar
Björck, S. 1981 A stratigraphic study of Late Weichselian deglaciation, shore displacement and vegetation history in south-eastern Sweden. Fossils and Strata 14: 193.CrossRefGoogle Scholar
Björck, S. 1984 Bio- and chronostratigraphic significance of the Older Dryas chronozone—on the basis of new radiocarbon dates. Geologiska Föreningens i Stockholm Förhandlingar 106: 8191.CrossRefGoogle Scholar
Björck, S. 1995 A review of the history of the Baltic Sea 13.0 to 8.0 ka bp. Quaternary International 27: 1940.CrossRefGoogle Scholar
Björck, S. and Möller, P. 1987 Late Weichselian environmental history in southeastern Sweden during the deglaciation of the Scandinavian ice sheet. Quaternary Research 28: 137.CrossRefGoogle Scholar
Björck, S., Cato, I., Brunnberg, L. and Strömberg, B. 1992 The clay-varve based Swedish Time Scale and its relation to the Late Weichselian radiocarbon chronology. In Bard, E. and Broecker, W. S. eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I, Vol. 2. Berlin, Springer-Verlag: 2544.CrossRefGoogle Scholar
Björck, S., Wohlfarth, B. and Possnert, G. 1995 14C AMS measurements from the Late Weichselian part of the Swedish Time Scale. Quaternary International 27: 1118.CrossRefGoogle Scholar
Brunnberg, L. 1995 Clay-varve chronology and deglaciation during the Younger Dryas and Preboreal in the easternmost part of the Middle Swedish Ice Marginal Zone. University of Stockholm, Department of Quaternary Research, Quaternaria Series A: Theses and Research Papers 2: 94 p.Google Scholar
Cato, I. 1985 The definitive connection of the Swedish geochronological time scale with the present, and the new date of the zero year in Döviken, northern Sweden. Boreas 14: 117122.CrossRefGoogle Scholar
Cato, I. 1987 On the definitive connection of the Swedish Time Scale with the present. Sveriges Geologiska Undersökning , Ca 68: 55 p.Google Scholar
Cato, I. 1992 Shore displacement data based on lake isolations confirm the postglacial part of the Swedish Geochronological Time Scale. Sveriges Geologiska Undersökning , Ca 81: 7580.Google Scholar
De Geer, G. 1884 Om den Skandinaviska landsisens andra utbredning. Geologiska Föreningens i Stockholm Förhandlingar 7: 436466.CrossRefGoogle Scholar
De Geer, G. 1912 A geochronology of the last 12,000 years. 11 Congrès de Géologie International, Comptes Rendues : 241253.Google Scholar
De Geer, G. 1930 The Finiglacial sub-epoch in Sweden, Finland and the New World. Geografiska Annaler Stockholm 2: 101111.CrossRefGoogle Scholar
De Geer, G. 1940 Geochronologia Suecica, Principles. Kungliga Svenska Vetenskapsakademiens Handlingar 18(6): 367p.Google Scholar
Deslodges, J. R. 1994 Varve deposition and the sediment yield record at three small lakes of the southern Canadian Cordillera. Arctic and Alpine Research 26(2): 130140.CrossRefGoogle Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962967.CrossRefGoogle ScholarPubMed
Gary, M., McAfee, R. and Wolf, C. L. 1972 Glossary of Geology. Washington DC, American Geological Institute: 823 p.Google Scholar
Goslar, T. Kuc, T., Pazdur, M. F., Ralska-Jasiewiczowa, M., Rózanski, K., Szeroczynska, K., Walanus, A., Wicik, B., Wieckowski, , Arnold, M. and Bard, E. 1992 Possibilities for reconstructing radiocarbon level changes during the late Glacial by using a laminated sequence of Goścíaż Lake. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 826832.CrossRefGoogle Scholar
Goslar, T., Kuc, T., Ralska-Jasiewiczowa, M., Rożański, K., Arnold, M. Bard, E., van Geel, B., Pazdur, M. F., Szerozyńska, K., Wicik, B., Więckowski, K., Wala nus, A. 1993 High-resolution lacustrine record of the Late Glacial/Holocene transition in Central Europe. Quaternary Science Reviews 12.CrossRefGoogle Scholar
Gulliksen, S., Possnert, G., Mangerud, J. and Birks, H. 1994 AMS 14C dating of the Kråkenäs Late Weichselian sediments. (Abstract) 15th International 14C Conference, Glasgow, Scotland, 15–19 August.Google Scholar
Hajdas, I. 1993 Extension of the Radiocarbon Calibration Curve by AMS Dating of Laminated Sediments of Lake Soppensee and Lake Holzmaar. Ph.D. dissertation, ETH Zürich No. 10157: 147 p.Google Scholar
Hajdas, I., Ivy, S. D., Beer, J., Bonani, G., Imboden, D., Lotter, A. F., Sturm, M. and Suter, M. 1993 AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12,000 14C years BP. Climate Dynamics 9: 107116.CrossRefGoogle Scholar
Hajdas, I., Zolitschka, B., Ivy-Ochs, S., Beer, J., Bonani, G., Leroy, S. A. G., Negendank, J. Ramrath, M. and Suter, M. 1995 AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quaternary Science Reviews 14: 137143.CrossRefGoogle Scholar
Holmquist, B. and Wohlfarth, B. (ms.) Statistical evaluation of the Late Weichselian part of the Swedish varve chronology. In preparation.Google Scholar
Kaiser, K. F. 1993 Beiträge zur Klimageschichte vom späten Hochglazial bis ins frühe Holozän rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. Winterthur, Ziegler Druck- und Verlags-AG: 203 p.Google Scholar
Kelts, K. and Hsu, K. J. 1978 Freshwater carbonate sedimentation. In Lerman, A., ed., Lakes: Geology, Chemistry, Physics. Springer-Verlag: 295323.CrossRefGoogle Scholar
Kristiansson, J. 1986 The ice recession in the southeastern part of Sweden: A varve-chronological time scale for the latest part of the Late Weichselian. University of Stockholm, Department of Quaternary Research, Report 7: 1132.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 7200–9439 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.CrossRefGoogle Scholar
Kromer, B., Becker, B., Spurk, M. and Trimborn, P. 1994 Radiocarbon time scale in the early Holocene and isotope time series based on tree-ring chronologies. Terra Nostra 1: 3133.Google Scholar
Kitagawa, H., Fukuzawa, H., Nakamura, T., Okamura, M., Takemura, K., Hayashida, A. and Yasuda, Y. 1995 AMS 14C dating of the varved sediments from Lake Suigetsu, Central Japan and atmospheric 14C change during the late Pleistocene. Radiocarbon , this issue.CrossRefGoogle Scholar
Leemann, A. and Niessen, F. 1994 Varve formation and the climatic record in an Alpine proglacial lake: Calibrating annually laminated sediments against hydrological and meteorological data. The Holocene 4(1): 18.CrossRefGoogle Scholar
Leonard, E. M. 1985 Glaciological and climatic controls on lake sedimentation, Canadian Rocky Mountains. Zeitschrift für Gletscherkunde und Glazialgeologie 21: 3542.Google Scholar
Lidén, R. 1913 Geokronologiska Studier öfver det Finiglaciala Skedet i Ångermanland. Sveriges Geologiska Undersökning 9: 139.Google Scholar
Lidén, R. 1938 Den senkvartära strandförskjutningens förlopp och kronologi i Ångermanland. Geologiska Föreningens i Stockholm Förhandlingar 60: 397404.CrossRefGoogle Scholar
Lotter, A. F., Ammann, B., Beer, J., Hajdas, I. and Sturm, M. 1992 A step towards an absolute time-scale for the Late-Glacial: Annually laminated sediments from Soppensee (Switzerland). In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I, Vol. 2. Berlin, Springer-Verlag: 4568.CrossRefGoogle Scholar
Lundqvist, J. 1975 Ice recession in central Sweden, and the Swedish Time Scale. Boreas 4: 4754.CrossRefGoogle Scholar
Lundqvist, J. 1985 The 1984 symposium on clay-varve chronology in Stockholm. Boreas 14: 9799.Google Scholar
Olsson, I. 1986 Radiometric dating. In Berglund, B. E., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. New York, John Wiley & Sons: 273312.Google Scholar
Perkins, J. A. and Sims, J. D. 1983 Correlation of Alaskan varve thickness with climatic parameters, and use in palaeoclimatic reconstruction. Quaternary Research 20: 308321.CrossRefGoogle Scholar
Possnert, G. 1990 Radiocarbon dating by the accelerator technique. Norwegian Archaeological Review 23(1–2): 3037.CrossRefGoogle Scholar
Ralska-Jasiewiczowa, M., van Geel, B., Goslar, T. and Kuc, T. 1992 The record of the late Glacial/Holocene transition in the varved sediments of lake Gosciaz, central Poland. Sveriges Geologiska Undersökning Ser. Ca. 81: 257268.Google Scholar
Renberg, I. 1976 Annually laminated sediments in Lake Rudetjärn, Medelpad province, northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 98: 335360.CrossRefGoogle Scholar
Renberg, I. 1981 Formation, structure and visual appearance of iron-rich, varved lake sediments. Verhandlungen des Internationalen Vereins für Limnologie 21: 94101.Google Scholar
Ringberg, B. 1971 Glacialgeologi och isavsmältning i östra Blekinge. Sveriges Geologiska Undersökning C 661: 1174.Google Scholar
Ringberg, B. 1991 Late Weichselian clay varve chronology and glaciolacustrine environment during deglaciation in southeastern Sweden. Sveriges Geologiska Undersökning 79: 142.Google Scholar
Ringberg, B. and Rudmark, L. 1985 Varve chronology based upon glacial sediments in the area between Karlskrona and Kalmar, southeastern Sweden. Boreas 14: 107110.CrossRefGoogle Scholar
Rozanski, et al. 1992 The late Glacial-Holocene transition in central Europe derived from isotope studies of laminated sediments from Lake Gosciaz (Poland). In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I, Vol. 2. Berlin, Springer-Verlag: 6980.CrossRefGoogle Scholar
Saarnisto, M. 1986 Annually laminated lake sediments. In Berglund, B. E., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. New York, John Wiley & Sons: 343370.Google Scholar
Sauramo, M. 1923 Studies on the Quaternary varve sediments in southern Finland. Bulletin de la Commission Géologique de Finlande 60: 1164.Google Scholar
Simola, H. 1977 Diatom succession in the formation of annually laminated sediment in Lovojärvi, southern Finland, during the past 600 years. Annales Botanicaw Fennici 14: 143148.Google Scholar
Strömberg, B. 1983 The Swedish varve chronology. In Ehlers, J., ed., Glacial Deposits in North-West Europe. Rotterdam, Balkema: 97105.Google Scholar
Strömberg, B. 1985 Revision of the late glacial Swedish varve chronology. Boreas 14: 101105.CrossRefGoogle Scholar
Strömberg, B. 1989 Late Weichselian deglaciation and clay varve chronology in east-central Sweden. Sveriges Geologiska Undersökning Ca 73: 170.Google Scholar
Strömberg, B. 1994 Younger Dryas deglaciation at Mt. Billingen, and clay varve dating of the Younger Dryas/Preboreal transition. Boreas 23: 177193.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program 1993. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Sturm, M. 1979 Origin and composition of clastic varves. In Schlüchter, C., ed., Moraines and Varves. Rotterdam, Balkema: 281285.Google Scholar
Svensson, N.- O. 1989 Late Weichselian and early Holocene shore displacement in the central Baltic, based on stratigraphical and morphological records from eastern Småland and Gotland, Sweden. LUNDQUA Thesis 25: 195 p.Google Scholar
Vogel, J. S., Southon, J. R., Nelson, D. E. and Brown, T. A. 1984 Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B5: 289293.CrossRefGoogle Scholar
Wohlfarth, B., Björck, S., Lemdahl, G. and Ising, J. 1994 Ice recession and depositional environment in the Blekinge archipelago of the Baltic Ice Lake. GFF 116: 312.CrossRefGoogle Scholar
Wohlfarth, B., Björck, S., Possnert, G. and Brunnberg, L. 1995 A comparison between radiocarbon dated Late Weichselian calendar-year chronologies. Journal of Coastal Research Special Issue 17: Holocene Cyclic Pulses and Sedimentation : in press.Google Scholar
Wohlfarth, B., Björck, S., Possnert, G., Lemdahl, G., Brunnberg, L., Ising, J., Olsson, S. and Svensson, N.-O. 1993 AMS dating Swedish varved clays of the last glacial/interglacial transition and the potential/difficulties of calibrating Late Weichselian ‘absolute’ chronologies. Boreas 22: 113128.CrossRefGoogle Scholar
Zbinden, H., Andrée, M., Oeschger, H., Ammann, B., Lotter, A., Bonani, G. and Wölfli, W. 1989 Atmospheric radiocarbon at the end of the last Glacial: An estimate based on AMS radiocarbon dates on terrestrial macrofossils from lake sediments. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 795804.CrossRefGoogle Scholar
Zeuner, F. E. 1950 Dating the Past. London, Methuen & Co.: 474 p.Google ScholarPubMed
Zolitschka, B., Haverkamp, B., and Negendank, J. F. W. 1992 Younger Dryas oscillation—varve dated microstratigraphic, palynological and palaeomagnetic records from Lake Holzmaar, Germany. In Bard, E. and Broecker, W. S. eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I, Vol. 2. Berlin, Springer-Verlag: 81102.CrossRefGoogle Scholar