Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T05:26:26.285Z Has data issue: false hasContentIssue false

Stratified 14C Dates and Ceramic Chronologies: Case Studies for the Early Bronze Age at Troy (Turkey) and Ezero (Bulgaria)

Published online by Cambridge University Press:  18 July 2016

Bernhard Weninger*
Affiliation:
University of Köln, Radiocarbon Laboratory, Institut der Ur- und Frühgeschichte, Weyertal 125 D-50923 Köln, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Prehistoric tell stratigraphies, like deep-sea sediments or peat deposits, store information about past atmospheric 14C variations. By matching the 14C ages on charcoal samples from settlement deposits with the tree-ring calibration curve, estimates for the time span covered by successive stratigraphic phases can be derived. This method is applied to 14C data from the tell mounds at Troy, Turkey and Ezero, Bulgaria. I compare the derived chronologies with the results of pottery shape seriation using correspondence analysis.

Type
III. Calibration of the 14C Time Scale
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Aitchison, T., Ottaway, B. and Al Ruzaiza, A. 1991 Summarizing a group of 14C dates on the historical time scale: With a worked example from the Late Neolithic of Bavaria. Antiquity 65: 108116.CrossRefGoogle Scholar
Benzecri, J.-P. 1980a L'analyse des donnees. I. La Taxonomie. Paris.Google Scholar
Benzecri, J.-P. 1980b L'analyse des donnees. II. L'analyse des correspondences. Paris.Google Scholar
Blegen, C., Caskey, J., and Rawson, M. 1950 Troy. Excavations Conducted by the University of Cincinnati 1932–1938 , Vol I: General Introduction: The First and Second Settlements. Princeton University Press.Google Scholar
Blegen, C., Caskey, J., and Rawson, M. 1951 Troy. Excavations Conducted by the University of Cincinnati 1932–1938 , Vol II: The Third, Fourth, and Fifth Settlements. Princeton University Press.Google Scholar
Bojadziev, J. 1992 Probleme der Radiokohlenstoff-datierung der Kulturen des Spätneolithikums und der Frühbronzezeit. Studia Praehistorica 11–12: 403.Google Scholar
Bolviken, E., Helskog, E., Helskog, K., Holm-Olsen, I., Solheim, L., and Bertelsen, R. 1982 Correspondence Analysis: An alternative to principal components. World Archaeology 14: 4160.Google Scholar
Breunig, P. 1987 14C-Chronologie des Vorderasiatischen, Südost- und Mitteleuropäischen Neolithikums. Bonn, Rudolf Habelt Verlag: 316 p.Google Scholar
Buck, C., Litton, C. and Scott, E. M. 1994 Making the most of radiocarbon dating: Some statistical considerations. Antiquity 68: 252263.Google Scholar
Buck, C., Litton, C. and Smith, A. 1992 Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19: 497512.CrossRefGoogle Scholar
Dehling, H. and van der Plicht, J. 1993 Statistical problems in calibrating radiocarbon dates. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 239244.Google Scholar
Easton, D. and Weninger, B. 1993 Troia VI Lower Town – Quadrants 18 and K8: A test case for dating by pottery seriation: Studia Troica 3: 4596.Google Scholar
Ferguson, C., Huber, B. and Suess, H. 1966 Determination of age of Swiss lake dwellings as an example of dendrochronologically calibrated radiocarbon dating. Zeitschrift Naturforschung 21a: 1173–1177.Google Scholar
Georgiev, G., Cernych, E., Merpert, N., Katincarov, R., Bacova, E., Kancev, M. 1979 Ezero. Eine Siedlung aus der Frühbronzezeit. Sofia.Google Scholar
Geyh, M. 1969 Versuch einer chronologischen Gliederung des marinen Holozän an der Nordseeküste mit Hilfe der statistischen Auswertung von 14C-Daten. Zeitschrift der Deutschen Geologischen Gesellschaft 188(2): 351360.Google Scholar
Geyh, M. 1980 Holocene sea-level history: Case study of the statistical evaluation of 14C dates. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 695704.Google Scholar
Geyh, M. and Maret, P. 1982 Histogram evaluation of C14 dates applied to the first complete Iron Age sequence from West Central Africa. Archaeometry 24: 158163.CrossRefGoogle Scholar
Ihm, P. and Groenewould, H. 1984 Correspondence Analysis and Gaussian Ordination. Lectures in Computational Statistics 3, Wien-Würzburg.Google Scholar
Jaguttis-Emden, M. 1977 Zur Präzision archäologischer Datierungen. Archaeologica Venatoria 4, Tübingen.Google Scholar
Korfmann, M. and Kromer, B. 1993 Demircihüyük, Besik-Tepe, Troia – Eine Zwischenbilanz zur Chronologic dreier Orte in Westanatolien. Studia Troica 3: 135171.Google Scholar
Manning, S. 1995 The Absolute Chronology of the Aegean Early Bronze Age: Archaeology, Radiocarbon and History. Monographs in Mediterranean Archaeology 1. Sheffield Academic Press.Google Scholar
Manning, S. and Weninger, B. 1992 A light in the dark: Archaeological wiggle matching and the absolute chronology of the close of the Aegean Late Bronze Age. Antiquity 66: 636663.Google Scholar
Mook, W. 1983 14C calibration curves depending on sample time width. In Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the Symposium 14 C and Archaeology. Strasbourg, PACT 8: 517525.Google Scholar
Ottaway, B. 1973 Dispersion diagrams: A new approach to the display of carbon-14 dates. Archaeometry 15:512.Google Scholar
Pape, W. 1979 Histogramme neolithischer 14C-Daten. Germania 57: 151.Google Scholar
Pazdur, M. and Michczynska, D. 1989 Improvement of the procedure for probabilistic calibration of radiocarbon dates. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 824832.CrossRefGoogle Scholar
Pearson, G. 1986 Precise calendrical dating of known growth-period samples, using a “curve-fitting” technique. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 292299.CrossRefGoogle Scholar
Pearson, G. and Stuiver, M. 1986 High-precision calibration of the radiocarbon time-scale 500–2500 bc. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2B): 839862.Google Scholar
Quitta, H. and Kohl, G. 1969 Neue Radiokarbondaten zum Neolithikum und zur frühen Bronzezeit Südosteuropas und der Sowjetunion. Zeitschrift für Archäologie 3(2): 233255.Google Scholar
Robinson, S. 1986 A computational algorithm for calibration of radiocarbon dates. In Gulliksen, S. and Nydal, R., eds., The 12th International Radiocarbon Conference, Abstracts. Trondheim, Tipir: 43.Google Scholar
Stolk, A., Hogervorst, K. and Berendsen, H. 1989 Correcting 14C histograms for the non-linearity of the radiocarbon time scale. Radiocarbon 31(2): 169177.Google Scholar
Stuiver, M. and Pearson, G. 1986 High-precision calibration of the radiocarbon time-scale, ad 1950–600 bc. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 124.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Suess, H. 1970 The three causes of secular 14C fluctuations, their amplitudes and time constants. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium. Stockholm, Almqvist & Wiksell: 595605.Google Scholar
van der Plicht, J. 1993 The Groningen radiocarbon calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 231237.Google Scholar
van Geel, B. and Mook, W. G. 1989 High-resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31(2): 151155.Google Scholar
Ward, G. and Wilson, S. 1978 Procedures for comparing and combining radiocarbon age determinations. Archaeometry 20: 1931.Google Scholar
Weninger, B. 1986 High-precision calibration of archaeological radiocarbon dates. Acta Interdisciplinaria Archaeologica 4: 1153.Google Scholar
Weninger, B. 1987 Die Radiocarbondaten. In Korfmann, M., ed., Demircihüyük. Die Ergebnisse der Ausgrabungen 1975–1978 Vol. 2. Mainz, Naturwissenschaftliche Untersuchungen: 413.Google Scholar
Weninger, B. 1990 Theoretical radiocarbon discrepancies. In Hardy, D. A. and Renfrew, A. C., eds., Thera and the Aegean World III, Vol 3: Chronology . Proceedings of the Third International Conference, Santorini, Greece 1989: 216231.Google Scholar
Weninger, B. 1992a (ms.) Studien zur dendrochronologischen Kalibration von archäologischen 14 C Daten. Ph.D. dissertation. Johann Wolfgang Goethe Universität, Frankfurt am Main.Google Scholar
Weninger, B. 1992b Fallstudien zur 14C Chronologie in Bulgarien. Studia Praehistorica 11/12: 407422.Google Scholar