Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T08:00:55.931Z Has data issue: false hasContentIssue false

Application of 14C Data for the Estimation of Sphagnum Peat Increment in Estonian Ombrotrophic Mires

Published online by Cambridge University Press:  18 July 2016

J.-M. Punning
Affiliation:
Institute of Ecology, Kevade 2, EE001 Tallinn, Estonia
Tiiu Koff
Affiliation:
Institute of Ecology, Kevade 2, EE001 Tallinn, Estonia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We calculated apparent increment values based on the radiocarbon dates of 21 Estonian ombrotrophic mires (raised bogs). For short periods, the values vary significantly, but the integrated increment for the total complex of ombrotrophic peat shows a strong increasing tendency with decreasing peat age. This is probably due to the decay of accumulated organic matter. Our hypotheses concern the mechanisms of decay and methods for increasing the reliability of the interpolation and extrapolation of 14C data.

Type
Part 2: Applications
Copyright
Copyright © The American Journal of Science 

References

Aaby, B. 1986 Palaeoecological study of mires. In Berglund, B. E., ed., Handbook of Holocene Palaeoecology and Palaeohydrology. New York, John Wiley & Sons: 145164.Google Scholar
Aaby, B. and Tauber, H. 1975 Rates of peat formations in relation to degree of humification and local environment, as shown by studies of a raised bog in Denmark. Boreas 4: 117.Google Scholar
Clymo, R. S. 1983 Peat: Ecosystems of the world. In Gore, A., ed., Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World 4. New York, Elsevier: 159224.Google Scholar
Clymo, R. S. 1984 The limits to peat bog growth. Philosophical Transactions of the Royal Society, London B303: 605654.Google Scholar
Clymo, R. S. 1992 Models of peat growth. Suo 43(4–5): 127136.Google Scholar
Crill, P., Barlett, K. and Roulet, N. 1992 Methane flux from boreal peatlands. Suo 43: 173182.Google Scholar
Donner, J., Alhonen, P., Eronen, M., Jungner, H. and Vuorela, I. 1978 Biostratigraphy and radiocarbon dating of the Holocene lake sediments of Työtjärvi and the peats in the adjoining bog Varrassuo west of Lahti in southern Finland. Annales Botanici Fennici 15: 258280.Google Scholar
Granlund, E. 1932 De svenska högmossarnas geologi. Sveriges Geologiska Undersökning C373, Arsbok 26: 1193 (in Swedish).Google Scholar
Hicks, S. 1975 Variations in pollen frequency in a bog at Kangerjoki, N.E. Finland during the Flandrian. Commentationes Biologica 80: 128.Google Scholar
Hornets, M. 1980 The determination of the age of peat layers based on the peat bulk density method. Proceedings of the Academy of Sciences of the ESSR, Geology 29: 121127 (in Russian, summary in English).Google Scholar
Hornets, M. 1994 On the growth of peats in Estonia. Yearbook of the Estonian Geographical Society. Estonian Academy Publishers 13–17 (in Estonian, summary in English).Google Scholar
Ingram, H. A. P. 1982 Size and shape in raised mire ecosystems: A geophysical model. Nature 297: 300303.Google Scholar
Kilian, M. R., van der Plicht, J. and van Geel, B. 1995 Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews 14: 959966.Google Scholar
Koff, T. 1994 The development of vegetation. In Punning, J. M., ed., The Influence of Natural and Anthropogenic Factors on the Development of Landscapes. The Results of a Comprehensive Study in NE Estonia. Institute of Ecology, publication 2/1994, Tallinn: 2457.Google Scholar
Menke, B. 1987 Geobotanische und geochemische Untersuchungen an einem Torfprofil zur Frage natürlicher und anthropogener Elementverfrachtungen. Geologisches Jahrbuch A95: 3102.Google Scholar
Middeldorp, A. 1982 Functional Paleoecology of Raised Bogs – An Analysis by Means of Pollen Density Dating in Connection with the Regional Forest History. Amsterdam: 124 p.Google Scholar
Punning, J.-M., Hornets, M. and Koff, T. 1993 Possibilities for detailed dating of peat bog deposits. Radiocarbon 35(3): 379385.Google Scholar
Tolonen, K., Huttunen, P. and Jungner, H. 1985 Regeneration of two coastal raised bogs in eastern North America. Annales Academiae Scientarum Fennicae A III 139: 151.Google Scholar
Tolonen, K., Vasander, H., Damman, A. W. H. and Clymo, R. S. 1992 Preliminary estimate of long-term carbon accumulation and loss in 25 Boreal peatland. Suo 43(4–5): 277280.Google Scholar
van der Plicht, J. 1993 The Groningen radiocarbon calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 231237.Google Scholar
Veski, S. 1996 History of vegetation and human impact in northern Saaremaa, Estonia based on the biostratigraphy of the Surusoo mire: Preliminary results. In Hackens, T. et al., eds., Coastal Estonia: Recent advances in environmental and cultural history. PACT 51. Strasbourg, Conseil de l'Europe: 5766.Google Scholar
Weber, C. A. 1910 Was lehrt der Aufbau der Moore Norddeutschlands über den Wechsel des Klimas in postglazialer Zeit? Zeitschrift der Deutschen geologischen Gesellschaft 62: 25.Google Scholar