The 2023 MDPI Annual Report has
been released!
 
17 pages, 7183 KiB  
Article
Updates on Impact Ionisation Triggering of Thyristors
by Alicia Ana del Barrio Montañés, Viliam Senaj, Thomas Kramer and Martin Sack
Appl. Sci. 2024, 14(10), 4196; https://doi.org/10.3390/app14104196 (registering DOI) - 15 May 2024
Abstract
High voltage (HV) generators are used in multiple industrial and scientific facilities. Recent publications have demonstrated that triggering industrial thyristors (relatively slow switching devices) in overvoltage mode, also called impact ionization mode, significantly enhances their dU/dt and dI/dt characteristics. This novel triggering methodology [...] Read more.
High voltage (HV) generators are used in multiple industrial and scientific facilities. Recent publications have demonstrated that triggering industrial thyristors (relatively slow switching devices) in overvoltage mode, also called impact ionization mode, significantly enhances their dU/dt and dI/dt characteristics. This novel triggering methodology necessitates the application of substantial overvoltage between the thyristor’s anode and cathode, delivered with a swift slew rate exceeding 1 kV/ns. The adoption of compact pulse generators constructed from commercially available off-the-shelf components (COTS) opens up avenues for deploying this technology across various domains, including the implementation of high-speed kicker generators in particle accelerators. In our methodology, we employed commercially available high-voltage SiC MOSFETs along with a custom-designed fast gate driver. This driver was conceptualized based on the recent development of gate boosting techniques, featuring a driving voltage exceeding 600 V. The gate driver for these MOSFETs comprises three key components: a level-shifter with NMOS and PMOS transistors, a compact Marx generator with two avalanche transistors, and a GaN HEMT in a high input and low output impedance configuration. The proposed gate-boosting driver achieves a slew rate exceeding 1 kV/ns for the driving pulse. Furthermore, we demonstrate that with this driver, a 1.7 kV rated SiC MOSFET can produce an output pulse of 1.45 kV and a maximum slew rate of ≈2.5 kV/ns. This gate-boosting driver aims to minimize commutation times, achieves a slew rate of over 1 kV/ns, and handle higher loads, making it ideal for impact ionization triggering of industrial thyristors. Full article
16 pages, 781 KiB  
Article
Postnatal Brain Trajectories and Maternal Intelligence Predict Childhood Outcomes in Complex CHD
by Vincent K. Lee, Rafael Ceschin, William T. Reynolds, Benjamin Meyers, Julia Wallace, Douglas Landsittel, Heather M. Joseph, Daryaneh Badaly, J. William Gaynor, Daniel Licht, Nathaniel H. Greene, Ken M. Brady, Jill V. Hunter, Zili D. Chu, Elisabeth A. Wilde, R. Blaine Easley, Dean Andropoulos and Ashok Panigrahy
J. Clin. Med. 2024, 13(10), 2922; https://doi.org/10.3390/jcm13102922 (registering DOI) - 15 May 2024
Abstract
Objective: To determine whether early structural brain trajectories predict early childhood neurodevelopmental deficits in complex CHD patients and to assess relative cumulative risk profiles of clinical, genetic, and demographic risk factors across early development. Study Design: Term neonates with complex CHDs were [...] Read more.
Objective: To determine whether early structural brain trajectories predict early childhood neurodevelopmental deficits in complex CHD patients and to assess relative cumulative risk profiles of clinical, genetic, and demographic risk factors across early development. Study Design: Term neonates with complex CHDs were recruited at Texas Children’s Hospital from 2005–2011. Ninety-five participants underwent three structural MRI scans and three neurodevelopmental assessments. Brain region volumes and white matter tract fractional anisotropy and radial diffusivity were used to calculate trajectories: perioperative, postsurgical, and overall. Gross cognitive, language, and visuo-motor outcomes were assessed with the Bayley Scales of Infant and Toddler Development and with the Wechsler Preschool and Primary Scale of Intelligence and Beery–Buktenica Developmental Test of Visual–Motor Integration. Multi-variable models incorporated risk factors. Results: Reduced overall period volumetric trajectories predicted poor language outcomes: brainstem ((β, 95% CI) 0.0977, 0.0382–0.1571; p = 0.0022) and white matter (0.0023, 0.0001–0.0046; p = 0.0397) at 5 years; brainstem (0.0711, 0.0157–0.1265; p = 0.0134) and deep grey matter (0.0085, 0.0011–0.0160; p = 0.0258) at 3 years. Maternal IQ was the strongest contributor to language variance, increasing from 37% at 1 year, 62% at 3 years, and 81% at 5 years. Genetic abnormality’s contribution to variance decreased from 41% at 1 year to 25% at 3 years and was insignificant at 5 years. Conclusion: Reduced postnatal subcortical–cerebral white matter trajectories predicted poor early childhood neurodevelopmental outcomes, despite high contribution of maternal IQ. Maternal IQ was cumulative over time, exceeding the influence of known cardiac and genetic factors in complex CHD, underscoring the importance of heritable and parent-based environmental factors. Full article
(This article belongs to the Section Cardiology)
23 pages, 9844 KiB  
Article
Retinex Jointed Multiscale CLAHE Model for HDR Image Tone Compression
by Yu-Joong Kim, Dong-Min Son and Sung-Hak Lee
Mathematics 2024, 12(10), 1541; https://doi.org/10.3390/math12101541 (registering DOI) - 15 May 2024
Abstract
Tone-mapping algorithms aim to compress a wide dynamic range image into a narrower dynamic range image suitable for display on imaging devices. A representative tone-mapping algorithm, Retinex theory, reflects color constancy based on the human visual system and performs dynamic range compression. However, [...] Read more.
Tone-mapping algorithms aim to compress a wide dynamic range image into a narrower dynamic range image suitable for display on imaging devices. A representative tone-mapping algorithm, Retinex theory, reflects color constancy based on the human visual system and performs dynamic range compression. However, it may induce halo artifacts in some areas or degrade chroma and detail. Thus, this paper proposes a Retinex jointed multiscale contrast limited adaptive histogram equalization method. The proposed algorithm reduces localized halo artifacts and detail loss while maintaining the tone-compression effect via high-scale Retinex processing. A performance comparison of the experimental results between the proposed and existing methods confirms that the proposed method effectively reduces the existing problems and displays better image quality. Full article
(This article belongs to the Special Issue New Advances and Applications in Image Processing and Computer Vision)
42 pages, 6191 KiB  
Review
Communications and Data Science for the Success of Vehicle-to-Grid Technologies: Current State and Future Trends
by Noelia Uribe-Pérez, Amaia Gonzalez-Garrido, Alexander Gallarreta, Daniel Justel, Mikel González-Pérez, Jon González-Ramos, Ane Arrizabalaga, Francisco Javier Asensio and Peru Bidaguren
Electronics 2024, 13(10), 1940; https://doi.org/10.3390/electronics13101940 (registering DOI) - 15 May 2024
Abstract
Vehicle-to-grid (V2G) technology has emerged as a promising solution for enhancing the integration of electric vehicles (EVs) into the electric grid, offering benefits, such as distributed energy resource (DER) integration, grid stability support, and peak demand management, among others, as well as environmental [...] Read more.
Vehicle-to-grid (V2G) technology has emerged as a promising solution for enhancing the integration of electric vehicles (EVs) into the electric grid, offering benefits, such as distributed energy resource (DER) integration, grid stability support, and peak demand management, among others, as well as environmental advantages. This study provides a comprehensive review of V2G systems, with a specific focus on the role of the communication, as they have been identified as key enablers, as well as the challenges that V2G must face. It begins by introducing the fundamentals of V2G systems, including their architecture, operation, and a description of the benefits for different sectors. It then delves into the communication technologies and protocols in V2G systems, highlighting the key requirements in achieving reliable and efficient communication between EVs and the different agents involved. A comprehensive review of communication standards is described, as well as the main communication technologies, which are evaluated in terms of their suitability for V2G applications. Furthermore, the study discusses the challenges and environmental implications of V2G technology, emphasizing the importance of addressing strong and reliable communications to maximize its potential benefits. Finally, future research directions and potential solutions for overcoming challenges in V2G systems are outlined, offering useful insights for researchers, policymakers, and administrations as well as related industry stakeholders. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

32 pages, 6873 KiB  
Review
Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions
by Mani Iyer Prasanth, Bhagavathi Sundaram Sivamaruthi, Clerance Su Yee Cheong, Kanika Verma, Tewin Tencomnao, James Michael Brimson and Anchalee Prasansuklab
Antioxidants 2024, 13(5), 606; https://doi.org/10.3390/antiox13050606 (registering DOI) - 15 May 2024
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that [...] Read more.
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD. Full article
Show Figures

Figure 1

22 pages, 1640 KiB  
Article
Novel Wide-Working-Temperature NaNO3-KNO3-Na2SO4 Molten Salt for Solar Thermal Energy Storage
by Huaiyou Wang, Jinli Li, Yuan Zhong, Xu Liu and Min Wang
Molecules 2024, 29(10), 2328; https://doi.org/10.3390/molecules29102328 (registering DOI) - 15 May 2024
Abstract
A novel ternary eutectic salt, NaNO3-KNO3-Na2SO4 (TMS), was designed and prepared for thermal energy storage (TES) to address the issues of the narrow temperature range and low specific heat of solar salt molten salt. The thermo-physical [...] Read more.
A novel ternary eutectic salt, NaNO3-KNO3-Na2SO4 (TMS), was designed and prepared for thermal energy storage (TES) to address the issues of the narrow temperature range and low specific heat of solar salt molten salt. The thermo-physical properties of TMS-2, such as melting point, decomposition temperature, fusion enthalpy, density, viscosity, specific heat capacity and volumetric thermal energy storage capacity (ETES), were determined. Furthermore, a comparison of the thermo-physical properties between commercial solar salt and TMS-2 was carried out. TMS-2 had a melting point 6.5 °C lower and a decomposition temperature 38.93 °C higher than those of solar salt. The use temperature range of TMS molten salt was 45.43 °C larger than that of solar salt, which had been widened about 13.17%. Within the testing temperature range, the average specific heat capacity of TMS-2 (1.69 J·K−1·g−1) was 9.03% higher than that of solar salt (1.55 J·K−1·g−1). TMS-2 also showed higher density, slightly higher viscosity and higher ETES. XRD, FTIR and Raman spectra SEM showed that the composition and structure of the synthesized new molten salt were different, which explained the specific heat capacity increasing. Molecular dynamic (MD) simulation was performed to explore the different macroscopic properties of solar salt and TMS at the molecular level. The MD simulation results suggested that cation–cation and cation–anion interactions became weaker as the temperature increased and the randomness of molecular motion increased, which revealed that the interaction between the cation cluster and anion cluster became loose. The stronger interaction between Na-SO4 cation–anion clusters indicated that TMS-2 molten salt had a higher specific heat capacity than solar salt. The result of the thermal stability analysis indicated that the weight losses of solar salt and TMS-2 at 550 °C were only 27% and 53%, respectively. Both the simulation and experimental study indicated that TMS-2 is a promising candidate fluid for solar power generation systems. Full article
17 pages, 11881 KiB  
Article
Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels
by Huai Wang, Ho-Won Lee, Minh Tien Tran and Dong-Kyu Kim
Materials 2024, 17(10), 2360; https://doi.org/10.3390/ma17102360 (registering DOI) - 15 May 2024
Abstract
In this study, we investigated the micromechanical deformation and damage behavior of commercially extruded and additively manufactured 316L stainless steels (AMed SS316L) by combining experimental examinations and crystal plasticity modeling. The AMed alloy was fabricated using the laser powder bed fusion (LPBF) technique [...] Read more.
In this study, we investigated the micromechanical deformation and damage behavior of commercially extruded and additively manufactured 316L stainless steels (AMed SS316L) by combining experimental examinations and crystal plasticity modeling. The AMed alloy was fabricated using the laser powder bed fusion (LPBF) technique with an orthogonal scanning strategy to control the directionality of the as-fabricated material. Optical microscopy and electron backscatter diffraction measurements revealed distinct grain morphologies and crystallographic textures in the two alloys. Uniaxial tensile test results suggested that the LPBFed alloy exhibited an increased yield strength, reduced elongation, and comparable ultimate tensile strength in comparison to those of the extruded alloy. A microstructure-based crystal plasticity model was developed to simulate the micromechanical deformation behavior of the alloys using representative volume elements based on realistic microstructures. A ductile fracture criterion based on the microscopically dissipated plastic energy on a slip system was adopted to predict the microscopic damage accumulation of the alloys during plastic deformation. The developed model could accurately predict the stress–strain behavior and evolution of the crystallographic textures in both the alloys. We reveal that the increased yield strength in the LPBFed alloy, compared to that in the extruded alloy, is attributed to the higher as-manufactured dislocation density and the cellular subgrain structure, resulting in a reduced elongation. The presence of annealing twins and favorable texture in the extruded alloy contributed to its excellent elongation, along with a higher hardening rate owing to twin–dislocation interactions during plastic deformation. Moreover, the grain morphology and defect state (e.g., dislocations and twins) in the initial state can significantly affect strain localization and damage accumulation in alloys. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
23 pages, 2100 KiB  
Article
Solvothermally Grown Oriented WO3 Nanoflakes for the Photocatalytic Degradation of Pharmaceuticals in a Flow Reactor
by Mirco Cescon, Claudia Stevanin, Matteo Ardit, Michele Orlandi, Annalisa Martucci, Tatiana Chenet, Luisa Pasti, Stefano Caramori and Vito Cristino
Nanomaterials 2024, 14(10), 860; https://doi.org/10.3390/nano14100860 (registering DOI) - 15 May 2024
Abstract
Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. [...] Read more.
Contamination by pharmaceuticals adversely affects the quality of natural water, causing environmental and health concerns. In this study, target drugs (oxazepam, OZ, 17-α-ethinylestradiol, EE2, and drospirenone, DRO), which have been extensively detected in the effluents of WWTPs over the past decades, were selected. We report here a new photoactive system, operating under visible light, capable of degrading EE2, OZ and DRO in water. The photocatalytic system comprised glass spheres coated with nanostructured, solvothermally treated WO3 that improves the ease of handling of the photocatalyst and allows for the implementation of a continuous flow process. The photocatalytic system based on solvothermal WO3 shows much better results in terms of photocurrent generation and photocatalyst stability with respect to state-of-the-art WO3 nanoparticles. Results herein obtained demonstrate that the proposed flow system is a promising prototype for enhanced contaminant degradation exploiting advanced oxidation processes. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
36 pages, 834 KiB  
Article
Enhancing Dementia Nursing Homes in South Korea: Lessons from German Building Standards
by Soo In Jee
Buildings 2024, 14(5), 1427; https://doi.org/10.3390/buildings14051427 (registering DOI) - 15 May 2024
Abstract
South Korea is an aging society with a rapidly increasing number of people with dementia. In that context, this study aimed to compare dementia nursing home building standards in South Korea and Germany, based on the minimum physical and architectural requirements specified by [...] Read more.
South Korea is an aging society with a rapidly increasing number of people with dementia. In that context, this study aimed to compare dementia nursing home building standards in South Korea and Germany, based on the minimum physical and architectural requirements specified by both countries’ relevant laws, to gain insights into improving South Korean building standards. I examined South Korea’s Welfare of Senior Citizens Act and its Enforcement Regulations, and Germany’s Federal Nursing Home Act (HeimG), Regulation on Minimum Standards for Nursing Homes (HeimMindBauV), and the corresponding state regulations. The analysis revealed differences regarding the basic requirements, facility sizes, composition of necessary rooms, and detailed regulations pertaining to these rooms. South Korea emphasized autonomy, including barrier-free and compensatory environments, as well as safety and security. Meanwhile, Germany enhanced similar aspects of autonomy to those in South Korea, including the barrier-free standard DIN 18040-2. Additionally, Germany incorporated features such as familiarity, sensory stimulation, legibility, and social interaction, reflecting aspects that offer orientational cues for autonomy. Improving South Korean building standards requires stronger regulations on the autonomy of individuals with dementia. Further, additional regulations on familiarity, sensory stimulation, legibility, and social interactions should be considered. The results provide foundational data for cross-national comparisons to establish building standards for dementia-friendly built spaces in dementia nursing homes in South Korea. Further surveys on spatial utilization, discussions, and the application of proposed improvements in Korea would contribute to enhancing the dementia-friendly nursing home design in the country. Full article
(This article belongs to the Special Issue Advances of Healthy Environment Design in Urban Development)
14 pages, 424 KiB  
Article
Deep Learning-Driven Interference Perceptual Multi-Modulation for Full-Duplex Systems
by Taehyoung Kim and Gyuyeol Kong
Mathematics 2024, 12(10), 1542; https://doi.org/10.3390/math12101542 (registering DOI) - 15 May 2024
Abstract
In this paper, a novel data transmission scheme, interference perceptual multi-modulation (IP-MM), is proposed for full-duplex (FD) systems. In order to unlink the conventional uplink (UL) data transmission using a single modulation and coding scheme (MCS) over the entire assigned UL bandwidth, IP-MM [...] Read more.
In this paper, a novel data transmission scheme, interference perceptual multi-modulation (IP-MM), is proposed for full-duplex (FD) systems. In order to unlink the conventional uplink (UL) data transmission using a single modulation and coding scheme (MCS) over the entire assigned UL bandwidth, IP-MM enables the transmission of UL data channels based on multiple MCS levels, where a different MCS level is applied to each subband of UL transmission. In IP-MM, a deep convolutional neural network is used for MCS-level prediction for each UL subband by estimating the potential residual self-interference (SI) according to the downlink (DL) resource allocation pattern. In addition, a subband-based UL transmission procedure is introduced from a specification point of view to enable IP-MM-based UL transmission. The benefits of IP-MM are verified using simulations, and it is observed that IP-MM achieves approximately 20% throughput gain compared to the conventional UL transmission scheme. Full article
15 pages, 690 KiB  
Article
Optimization of Renewable Energy Hydrogen Production Systems Using Volatility Improved Multi-Objective Particle Swarm Algorithm
by Hui Wang, Xiaowen Chen, Qianpeng Yang, Bowen Li, Zongyu Yue, Jeffrey Dankwa Ampah, Haifeng Liu and Mingfa Yao
Energies 2024, 17(10), 2384; https://doi.org/10.3390/en17102384 (registering DOI) - 15 May 2024
Abstract
Optimizing the energy structure to effectively enhance the integration level of renewable energy is an important pathway for achieving dual carbon goals. This study utilizes an improved multi-objective particle swarm optimization algorithm based on load fluctuation rates to optimize the architecture and unit [...] Read more.
Optimizing the energy structure to effectively enhance the integration level of renewable energy is an important pathway for achieving dual carbon goals. This study utilizes an improved multi-objective particle swarm optimization algorithm based on load fluctuation rates to optimize the architecture and unit capacity of hydrogen production systems. It investigates the optimal configuration methods for the architectural model of new energy hydrogen production systems in Xining City, Qinghai Province, as well as the internal storage battery, ALK hydrogen production equipment, and PEM hydrogen production equipment, aiming at various scenarios of power sources such as wind, solar, wind–solar complementary, and wind–solar–storage complementary, as well as intermittent hydrogen production scenarios such as hydrogen stations, hydrogen metallurgy, and continuous hydrogen production scenarios such as hydrogen methanol production. The results indicate that the fluctuation of hydrogen load scenarios has a significant impact on the installed capacity and initial investment of the system. Compared with the single-channel photovoltaic hydrogen production scheme, the dual-channel hydrogen production scheme still reduces equipment capacity by 6.04% and initial investment by 6.16% in the chemical hydrogen scenario with the least load fluctuation. Full article
(This article belongs to the Section B: Energy and Environment)
20 pages, 964 KiB  
Review
Progress of Antimicrobial Mechanisms of Stilbenoids
by Xiancai Li, Yongqing Li, Binghong Xiong and Shengxiang Qiu
Pharmaceutics 2024, 16(5), 663; https://doi.org/10.3390/pharmaceutics16050663 (registering DOI) - 15 May 2024
Abstract
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a [...] Read more.
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a deeper understanding of microbial habits and drug resistance mechanisms, various creative strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by a C6–C2–C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing drug resistance. This review will provide an important reference for the future development and research into the mechanisms of stilbenoids as antimicrobial agents. Full article
(This article belongs to the Topic Challenges and Future Prospects of Antibacterial Therapy)
12 pages, 29069 KiB  
Article
Zr as an Alternative Grain Refiner in the Novel AlSi5Cu2Mg Alloy
by Dana Bolibruchová, Marek Matejka, Lukáš Širanec and Martin Švec
Metals 2024, 14(5), 581; https://doi.org/10.3390/met14050581 (registering DOI) - 15 May 2024
Abstract
Al-Si-Cu-Mg alloys are among the most significant types of aluminum alloys, accounting for 85–90% of all castings used in the automotive sector. These alloys are used, for example, in the manufacturing of engine blocks and cylinder heads due to their excellent specific strength [...] Read more.
Al-Si-Cu-Mg alloys are among the most significant types of aluminum alloys, accounting for 85–90% of all castings used in the automotive sector. These alloys are used, for example, in the manufacturing of engine blocks and cylinder heads due to their excellent specific strength (ratio of strength to specific weight) and superior castability and thermal conductivity. This study investigated the effect of using Zr as an alternative grain refiner in the novel AlSi5Cu2Mg cylinder head alloy. The microstructure of this alloy could not be refined via common Al-Ti-B grain refiners due to its specifically designed chemical composition, which limits the maximum Ti content to 0.03 wt.%. The results showed that the addition of Zr via the AlZr20 master alloy led to a gradual increase in the solidus temperature and to the grain refinement of the microstructure with the addition of as little as 0.05 wt.% Zr. The addition of more Zr (0.10, 0.15, and 0.20 wt.%) led to a gradual grain refinement effect for the alloy. The presence of Zr in the AlSi5Cu2Mg alloy was reflected in the formation of Zr-rich intermetallic phases with acicular morphology. Such phases acted as potent nucleants for the α-Al grain. Full article
(This article belongs to the Special Issue Grain Refinement and Mechanical Properties of Cast Alloys)
Show Figures

Figure 1

13 pages, 3978 KiB  
Article
Hydrogen Safety by Design: Exclusion of Flame Blow-Out from a TPRD
by Mina Kazemi, Sile Brennan and Vladimir Molkov
Hydrogen 2024, 5(2), 280-292; https://doi.org/10.3390/hydrogen5020016 (registering DOI) - 15 May 2024
Abstract
Onboard hydrogen storage tanks are currently fitted with thermally activated pressure relief devices (TPRDs), enabling hydrogen to blowdown in the event of fire. For release diameters below the critical diameter, the flame from the TPRD may blow-out during a pressure drop. Flame blow-outs [...] Read more.
Onboard hydrogen storage tanks are currently fitted with thermally activated pressure relief devices (TPRDs), enabling hydrogen to blowdown in the event of fire. For release diameters below the critical diameter, the flame from the TPRD may blow-out during a pressure drop. Flame blow-outs pose a safety concern for an indoor or covered environment, e.g., a garage or carpark, where hydrogen can accumulate and deflagrate. This study describes the application of a validated computational fluid dynamics (CFD) model to simulate the dynamic flame behaviour from a TPRD designed to exclude its blow-out. The dynamic behaviour replicates a real scenario. Flame behaviour during tank blowdown through two TPRDs with different nozzle geometries is presented. Simulations confirm flame blow-out for a single-diameter TPRD of 0.5 mm during tank blowdown, while the double-diameter nozzle successfully excludes flame blow-out. The pressure at which the flame blow-out process is initiated during blowdown through a single-diameter nozzle was predicted. Full article
Show Figures

Figure 1

21 pages, 10528 KiB  
Article
Ozone-Assisted Hydrothermal Synthesis Method of Sb-Doped SnO2 Conductive Nanoparticles for Carbon-Free Oxygen-Reduction-Reaction Catalysts of Proton-Exchange-Membrane Hydrogen Fuel Cells
by Takeshi Fukuda, Kenji Iimura, Takanori Yamamoto, Ryuki Tsuji, Maito Tanabe, Seiji Nakashima, Naoki Fukumuro and Seigo Ito
Crystals 2024, 14(5), 462; https://doi.org/10.3390/cryst14050462 (registering DOI) - 15 May 2024
Abstract
Proton-exchange-membrane hydrogen fuel cells (PEMFCs) are an important energy device for achieving a sustainable hydrogen society. Carbon-based catalysts used in PEMFCs’ cathode can degrade significantly during operation-voltage shifts due to the carbon deterioration. The longer lifetime of the system is necessary for the [...] Read more.
Proton-exchange-membrane hydrogen fuel cells (PEMFCs) are an important energy device for achieving a sustainable hydrogen society. Carbon-based catalysts used in PEMFCs’ cathode can degrade significantly during operation-voltage shifts due to the carbon deterioration. The longer lifetime of the system is necessary for the further wide commercialization of PEMFCs. Therefore, carbon-free catalysts are required for PEMFCs. In this study, highly crystallized conducting Sb-doped SnO2 (Sb-SnO2) nanoparticles (smaller than 7 nm in size) were synthesized using an ozone-assisted hydrothermal synthesis. Pt nanoparticles were loaded on Sb-SnO2 supporting particles by polyol method to be “Pt/Sb-SnO2 catalyst”. The Pt/Sb-SnO2 catalyst showed a high oxygen reduction reaction (ORR) mass activity (178.3 A g−1-Pt @ 0.9 V), compared to Pt/C (149.3 A g−1-Pt @ 0.9 V). In addition, the retention ratio from the initial value of electrochemical surface area (ECSA) during 100,000-voltage cycles tests between 1.0 V and 1.5 V, Pt/SnO2 and Pt/Sb-SnO2 catalyst exhibited higher stability (90% and 80%), respectively, than that of Pt/C catalyst (47%). Therefore, the SnO2 and Sb-SnO2 nanoparticles synthesized using this new ozone-assisted hydrothermal method are promising as carbon-free catalyst supports for PEMFCs. Full article
Show Figures

Figure 1

23 pages, 4458 KiB  
Article
Optimization Design of Straw-Crushing Residual Film Recycling Machine Frame Based on Sensitivity and Grey Correlation Degree
by Pengda Zhao, Hailiang Lyu, Lei Wang, Hongwen Zhang, Zhantao Li, Kunyu Li, Chao Xing and Bocheng Guoyao
Agriculture 2024, 14(5), 764; https://doi.org/10.3390/agriculture14050764 (registering DOI) - 15 May 2024
Abstract
This paper takes the frame as the research object and explores the vibration characteristics of the frame to address the vibration problem of a 1-MSD straw-crushing and residual film recycling machine in the field operation process, and an accurate identification of the modal [...] Read more.
This paper takes the frame as the research object and explores the vibration characteristics of the frame to address the vibration problem of a 1-MSD straw-crushing and residual film recycling machine in the field operation process, and an accurate identification of the modal parameters of the frame is carried out to solve the resonance problem of the machine, which can achieve cost reduction and increase income to a certain extent. The first six natural frequencies of the frame are extracted by finite element modal identification and modal tests, respectively. The rationality of the modal test results is verified using the comprehensive modal and frequency response confidences. The maximum frequency error of modal frequency results of the two methods is only 6.61%, which provides a theoretical basis for the optimal design of the frame. In order to further analyze the resonance problem of the machine, the external excitation frequency of the machine during normal operation in the field is solved and compared with the first six natural frequencies of the frame. The results show that the first natural frequency of the frame (18.89 Hz) is close to the external excitation generated by the stripping roller (16.67 Hz). The first natural frequency and the volume of the frame are set as the optimization objectives, and the optimal optimization scheme is obtained by using the Optistruct solver, sensitivity method, and grey correlation method. The results indicate the first-order natural frequency of the optimized frame is 21.89 Hz, an increase of 15.882%, which is much higher than the excitation frequency of 16.67 Hz, and resonance can be avoided. The corresponding frame volume is 9.975 × 107 mm3, and the volume reduction is 3.46%; the optimized frame has good dynamic performance, which avoids the resonance of the machine and conforms to the lightweight design criteria of agricultural machinery structures. The research results can provide some theoretical reference for this kind of machine in solving the resonance problem and carrying out related vibration characteristics research. Full article
(This article belongs to the Section Agricultural Technology)
12 pages, 835 KiB  
Article
Study on Permeability Evolution Law of Rock Mass under Mining Stress
by Pengpeng Zhang, Xuan Ji, Yanheng Li, Mingjing Xu, Bin Yao and Chenliang Zhang
Water 2024, 16(10), 1409; https://doi.org/10.3390/w16101409 (registering DOI) - 15 May 2024
Abstract
In order to study the stress–strain–permeability coefficient relationship of overlying strata in a fractured zone after coal mining, taking the Changcun coal mine in the Changzhi basin as an example, the permeability evolution law of coarse sandstone, fine sandstone, siltstone and mudstone during [...] Read more.
In order to study the stress–strain–permeability coefficient relationship of overlying strata in a fractured zone after coal mining, taking the Changcun coal mine in the Changzhi basin as an example, the permeability evolution law of coarse sandstone, fine sandstone, siltstone and mudstone during a stress–strain process was analyzed through a triaxial compression permeability test. The generalized model of the rock mass permeability evolution process under mining stress was summarized, and then a coupling model of the stress–water pressure–permeability coefficient of fractured rock was established based on the continuum model of rock mass. The results showed that the maximum permeability coefficient of different coal overburden types was quite different, and the peak strength of the rock mass preceded the maximum permeability coefficient during the rock mass failure process; the permeability coefficient first decreased and then increased, reaching its maximum value after the peak stress, which occurred during the strain-softening stage; the generalized model of rock mass permeability included the compaction stage, elasticity stage, stable fracture stage, unstable fracture stage, macroscopic failure stage and residual strength stage. Full article
20 pages, 7084 KiB  
Article
BMPR2 Loss Activates AKT by Disrupting DLL4/NOTCH1 and PPARγ Signaling in Pulmonary Arterial Hypertension
by Keytam S. Awad, Shuibang Wang, Edward J. Dougherty, Ali Keshavarz, Cumhur Y. Demirkale, Zu Xi Yu, Latonia Miller, Jason M. Elinoff and Robert L. Danner
Int. J. Mol. Sci. 2024, 25(10), 5403; https://doi.org/10.3390/ijms25105403 (registering DOI) - 15 May 2024
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane [...] Read more.
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH. Full article
Show Figures

Figure 1

20 pages, 743 KiB  
Review
Treatment and Care of Patients with ST-Segment Elevation Myocardial Infarction—What Challenges Remain after Three Decades of Primary Percutaneous Coronary Intervention?
by Vittorio Zuccarelli, Stefano Andreaggi, Jason L. Walsh, Rafail A. Kotronias, Miao Chu, Jonathan Vibhishanan, Adrian P. Banning and Giovanni Luigi De Maria
J. Clin. Med. 2024, 13(10), 2923; https://doi.org/10.3390/jcm13102923 (registering DOI) - 15 May 2024
Abstract
Primary percutaneous coronary intervention (pPCI) has revolutionized the prognosis of ST-segment elevation myocardial infarction (STEMI) and is the gold standard treatment. As a result of its success, the number of pPCI centres has expanded worldwide. Despite decades of advancements, clinical outcomes in STEMI [...] Read more.
Primary percutaneous coronary intervention (pPCI) has revolutionized the prognosis of ST-segment elevation myocardial infarction (STEMI) and is the gold standard treatment. As a result of its success, the number of pPCI centres has expanded worldwide. Despite decades of advancements, clinical outcomes in STEMI patients have plateaued. Out-of-hospital cardiac arrest and cardiogenic shock remain a major cause of high in-hospital mortality, whilst the growing burden of heart failure in long-term STEMI survivors presents a growing problem. Many elements aiming to optimize STEMI treatment are still subject to debate or lack sufficient evidence. This review provides an overview of the most contentious current issues in pPCI in STEMI patients, with an emphasis on unresolved questions and persistent challenges. Full article
(This article belongs to the Special Issue Management of Atherosclerosis)
13 pages, 2043 KiB  
Review
Osteoimmunology: An Overview of the Interplay of the Immune System and the Bone Tissue in Fracture Healing
by Rayan Ben Letaifa, Tarek Klaylat, Magdalena Tarchala, Chan Gao, Prism Schneider, Derek H. Rosenzweig, Paul A. Martineau and Rahul Gawri
Surgeries 2024, 5(2), 402-414; https://doi.org/10.3390/surgeries5020033 (registering DOI) - 15 May 2024
Abstract
Bone healing occurs through three consecutive and interdependent phases. While the acute inflammatory response is vital to fracture healing, chronic and systemic inflammation negatively affect the healing process. The bone tissue relies heavily on the immune system for its normal physiology and turnover. [...] Read more.
Bone healing occurs through three consecutive and interdependent phases. While the acute inflammatory response is vital to fracture healing, chronic and systemic inflammation negatively affect the healing process. The bone tissue relies heavily on the immune system for its normal physiology and turnover. The interactions are more pronounced in injury states, such as fractures and autoimmune disorders. Recently, the field of osteoimmunology, the study of the molecular interplay of the immune and skeletal systems, has gained much-needed attention to develop new therapeutic strategies to accelerate fracture healing and prevent the complications of fracture healing. This review provides an overview of the process of fracture healing and discusses the role of immune cells, their interplay with the released cytokines, and the current state of the art in the field of osteoimmunology. Full article
Show Figures

Figure 1

41 pages, 14843 KiB  
Article
Revision of the Genus Rhagastis Rothschild & Jordan, 1903 (Lepidoptera: Sphingidae) from China, Based on Morphological and Phylogenetic Analyses
by Zhuo-Heng Jiang, Jia-Xin Wang, Zhen-Bang Xu, Ian J. Kitching, Chia-Lung Huang, Shao-Ji Hu and Yun-Li Xiao
Insects 2024, 15(5), 359; https://doi.org/10.3390/insects15050359 (registering DOI) - 15 May 2024
Abstract
Here, the taxonomy of the genus Rhagastis Rothschild & Jordan, 1903 (Lepidoptera, Sphingidae, Macroglossinae, Macroglossini) from China is revised based on differences in wing morphology, male and female genitalia, and the phylogenetic relationship of the DNA barcodes. Subspecies of Rhagastis albomarginatus (Rothschild, [...] Read more.
Here, the taxonomy of the genus Rhagastis Rothschild & Jordan, 1903 (Lepidoptera, Sphingidae, Macroglossinae, Macroglossini) from China is revised based on differences in wing morphology, male and female genitalia, and the phylogenetic relationship of the DNA barcodes. Subspecies of Rhagastis albomarginatus (Rothschild, 1894) and R. castor (Walker, 1856) are treated as “good” species, namely Rhagastis dichroae Mell, 1922 stat. nov.; R. everetti Rothschild & Jordan, 1903 stat. nov.; R. aurifera (Butler, 1875) stat. rev.; R. chinensis Mell, 1922 stat. nov.; R. formosana Clark, 1925 stat. nov.; and R. jordani Oberthür, 1904 stat. rev. The distribution maps, biological notes, and ecological records of the genus Rhagastis Rothschild & Jordan, 1903 from China are given, and a species inventory of genus Rhagastis in the world is also included. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
18 pages, 553 KiB  
Article
Baby Food Pouches, Baby-Led Weaning, and Iron Status in New Zealand Infants: An Observational Study
by Neve H. McLean, Jillian J. Haszard, Lisa Daniels, Rachael W. Taylor, Benjamin J. Wheeler, Cathryn A. Conlon, Kathryn L. Beck, Pamela R. von Hurst, Lisa A. Te Morenga, Jenny McArthur, Rebecca Paul, Ioanna Katiforis, Kimberley J. Brown, Madeline C. Gash, Madeleine M. Rowan, Maria Casale, Alice M. Cox, Emily A. Jones, Rosario M. Jupiterwala, Bailey Bruckner, Liz Fleming and Anne-Louise M. Heathadd Show full author list remove Hide full author list
Nutrients 2024, 16(10), 1494; https://doi.org/10.3390/nu16101494 (registering DOI) - 15 May 2024
Abstract
Iron deficiency in infants can impact development, and there are concerns that the use of baby food pouches and baby-led weaning may impair iron status. First Foods New Zealand (FFNZ) was an observational study of 625 New Zealand infants aged 6.9 to 10.1 [...] Read more.
Iron deficiency in infants can impact development, and there are concerns that the use of baby food pouches and baby-led weaning may impair iron status. First Foods New Zealand (FFNZ) was an observational study of 625 New Zealand infants aged 6.9 to 10.1 months. Feeding methods were defined based on parental reports of infant feeding at “around 6 months of age”: “frequent” baby food pouch use (five+ times per week) and “full baby-led weaning” (the infant primarily self-feeds). Iron status was assessed using a venepuncture blood sample. The estimated prevalence of suboptimal iron status was 23%, but neither feeding method significantly predicted body iron concentrations nor the odds of iron sufficiency after controlling for potential confounding factors including infant formula intake. Adjusted ORs for iron sufficiency were 1.50 (95% CI: 0.67–3.39) for frequent pouch users compared to non-pouch users and 0.91 (95% CI: 0.45–1.87) for baby-led weaning compared to traditional spoon-feeding. Contrary to concerns, there was no evidence that baby food pouch use or baby-led weaning, as currently practiced in New Zealand, were associated with poorer iron status in this age group. However, notable levels of suboptimal iron status, regardless of the feeding method, emphasise the ongoing need for paying attention to infant iron nutrition. Full article
(This article belongs to the Special Issue Iron Deficiency and Iron-Related Disorders)
75 pages, 2098 KiB  
Review
Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases
by Varvara Nurmukanova, Alina Matsvay, Maria Gordukova and German Shipulin
Viruses 2024, 16(5), 787; https://doi.org/10.3390/v16050787 (registering DOI) - 15 May 2024
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections [...] Read more.
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential. Full article
(This article belongs to the Section General Virology)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop