The 2023 MDPI Annual Report has
been released!
 
12 pages, 753 KiB  
Article
The Landscape of Presence/Absence Variations during the Improvement of Rice
by Xia Zhou, Chenggen Qiang, Lei Chen, Dongjin Qing, Juan Huang, Jilong Li and Yinghua Pan
Genes 2024, 15(5), 645; https://doi.org/10.3390/genes15050645 (registering DOI) - 19 May 2024
Abstract
Rice is one of the most important staple crops in the world; therefore, the improvement of rice holds great significance for enhancing agricultural production and addressing food security challenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms (SNPs) in [...] Read more.
Rice is one of the most important staple crops in the world; therefore, the improvement of rice holds great significance for enhancing agricultural production and addressing food security challenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms (SNPs) in rice improvement with the development of next-generation sequencing technologies, research on the role of presence/absence variations (PAVs) in the improvement of rice is limited. In particular, there is a scarcity of studies exploring the traits and genes that may be affected by PAVs in rice. Here, we extracted PAVs utilizing resequencing data from 148 improved rice varieties distributed in Asia. We detected a total of 33,220 PAVs and found that the number of variations decreased gradually as the length of the PAVs increased. The number of PAVs was the highest on chromosome 1. Furthermore, we identified a 6 Mb hotspot region on chromosome 11 containing 1091 PAVs in which there were 29 genes related to defense responses. By conducting a genome-wide association study (GWAS) using PAV variation data and phenotypic data for five traits (flowering time, plant height, flag leaf length, flag leaf width, and panicle number) across all materials, we identified 186 significantly associated PAVs involving 20 cloned genes. A haplotype analysis and expression analysis of candidate genes revealed that important genes might be affected by PAVs, such as the flowering time gene OsSFL1 and the flag leaf width gene NAL1. Our work investigated the pattern in PAVs and explored important PAV key functional genes associated with agronomic traits. Consequently, these results provide potential and exploitable genetic resources for rice breeding. Full article
(This article belongs to the Special Issue Genetics and Genomics of Rice)
36 pages, 1278 KiB  
Review
Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques
by Ruisong Yu, Shijuan Dong, Bingqing Chen, Fusheng Si and Chunhua Li
Vaccines 2024, 12(5), 557; https://doi.org/10.3390/vaccines12050557 (registering DOI) - 19 May 2024
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs. Full article
(This article belongs to the Special Issue Porcine Virus and Vaccines)
Show Figures

Figure 1

19 pages, 7906 KiB  
Article
Abundant New Optical Soliton Solutions to the Biswas–Milovic Equation with Sensitivity Analysis for Optimization
by Md Nur Hossain, Faisal Alsharif, M. Mamun Miah and Mohammad Kanan
Mathematics 2024, 12(10), 1585; https://doi.org/10.3390/math12101585 (registering DOI) - 19 May 2024
Abstract
This study extensively explores the Biswas–Milovic equation (BME) with Kerr and power law nonlinearity to extract the unique characteristics of optical soliton solutions. These optical soliton solutions have different applications in the field of precision in optical switching, applications in waveguide design, exploration [...] Read more.
This study extensively explores the Biswas–Milovic equation (BME) with Kerr and power law nonlinearity to extract the unique characteristics of optical soliton solutions. These optical soliton solutions have different applications in the field of precision in optical switching, applications in waveguide design, exploration of nonlinear optical effects, imaging precision, reduced intensity fluctuations, suitability for optical signal processing in optical physics, etc. Through the powerful (G/G, 1/G)-expansion analytical method, a variety of soliton solutions are expressed in three distinct forms: trigonometric, hyperbolic, and rational expressions. Rigorous validation using Mathematica software ensures precision, while dynamic visual representations vividly portray various soliton patterns such as kink, anti-kink, singular soliton, hyperbolic, dark soliton, and periodic bright soliton solutions. Indeed, a sensitivity analysis was conducted to assess how changes in parameters affect the exact solutions, aiding in the understanding of system behavior and informing decision-making, especially in accurately designing or analyzing real-world optical phenomena. This investigation reveals the significant influence of parameters λ, τ, c, B, and Κ on the precise solutions in Kerr and power law nonlinearities within the BME. Notably, parameter λ exhibits consistently high sensitivity across all scenarios, while parameters τ and c demonstrate pronounced sensitivity in scenario III. The outcomes derived from this method are distinctive and carry significant implications for the dynamics of optical fibers and wave phenomena across various optical systems. Full article
(This article belongs to the Special Issue Exact Solutions and Numerical Solutions of Differential Equations)
Show Figures

Figure 1

17 pages, 3544 KiB  
Article
New Solutions in Single-Cell Protein Production from Methane: Construction of Glycogen-Deficient Mutants of Methylococcus capsulatus MIR
by Sergey Y. But, Ruslan Z. Suleimanov, Igor Y. Oshkin, Olga N. Rozova, Ildar I. Mustakhimov, Nikolai V. Pimenov, Svetlana N. Dedysh and Valentina N. Khmelenina
Fermentation 2024, 10(5), 265; https://doi.org/10.3390/fermentation10050265 (registering DOI) - 19 May 2024
Abstract
The biotechnology of converting methane to single-cell protein (SCP) implies using fast-growing thermotolerant aerobic methanotrophic bacteria. Among the latter, members of the genus Methylococcus received significant research attention and are used in operating commercial plants. Methylococcus capsulatus MIR is a recently discovered member [...] Read more.
The biotechnology of converting methane to single-cell protein (SCP) implies using fast-growing thermotolerant aerobic methanotrophic bacteria. Among the latter, members of the genus Methylococcus received significant research attention and are used in operating commercial plants. Methylococcus capsulatus MIR is a recently discovered member of this genus with the potential to be used for the purpose of SCP production. Like other Methylococcus species, this bacterium stores carbon and energy in the form of glycogen, particularly when grown under nitrogen-limiting conditions. The genome of strain MIR encodes two glycogen synthases, GlgA1 and GlgA2, which are only moderately related to each other. To obtain glycogen-free cell biomass of this methanotroph, glycogen synthase mutants, ΔglgA1, ΔglgA2, and ΔglgA1ΔglgA2, were constructed. The mutant lacking both glycogen synthases exhibited a glycogen-deficient phenotype, whereas the intracellular glycogen content was not reduced in strains defective in either GlgA1 or GlgA2, thus suggesting functional redundancy of these enzymes. Inactivation of the glk gene encoding glucokinase also resulted in a sharp decrease in glycogen content and accumulation of free glucose in cells. Wild-type strain MIR and the mutant strain ΔglgA1ΔglgA2 were also grown in a bioreactor operated in batch and continuous modes. Cell biomass of ΔglgA1ΔglgA2 mutant obtained during batch cultivation displayed high protein content (71% of dry cell weight (DCW) compared to 54% DCW in wild-type strain) as well as a strong reduction in glycogen content (10.8 mg/g DCW compared to 187.5 mg/g DCW in wild-type strain). The difference in protein and glycogen contents in biomass of these strains produced during continuous cultivation was less pronounced, yet biomass characteristics relevant to SCP production were slightly better for ΔglgA1ΔglgA2 mutant. Genome analysis revealed the presence of glgA1-like genes in all methanotrophs of the Gammaproteobacteria and Verrucomicrobia, while only a very few methanotrophic representatives of the Alphaproteobacteria possessed these determinants of glycogen biosynthesis. The glgA2-like genes were present only in genomes of gammaproteobacterial methanotrophs with predominantly halo- and thermotolerant phenotypes. The role of glycogen in terms of energy reserve is discussed. Full article
10 pages, 920 KiB  
Systematic Review
Opiate Withdrawal-Associated Esotropia: A Case Report and Systematic Review
by Varun Kasula, Brody M. Fogleman, Maaya Dev, Tyler Rizzieri, Corinne O’Brien and Rupa Shetty
Psychiatry Int. 2024, 5(2), 231-240; https://doi.org/10.3390/psychiatryint5020016 (registering DOI) - 19 May 2024
Abstract
Esotropia, which is the medial deviation of one or both eyes, is a rare withdrawal symptom that has been associated with opiate addiction. We report a case of a 36-year-old female patient who developed acute-onset esotropia and diplopia after self-admission to a psychiatric [...] Read more.
Esotropia, which is the medial deviation of one or both eyes, is a rare withdrawal symptom that has been associated with opiate addiction. We report a case of a 36-year-old female patient who developed acute-onset esotropia and diplopia after self-admission to a psychiatric facility for fentanyl addiction treatment and a systematic review of this rare presentation. A search of four databases (PubMed, Scopus, Embase, and Google Scholar) was conducted as of January 2024. We found 15 documented cases of opiate withdrawal-associated esotropia, with an average age of 27.2 years and an average time between last use and symptom onset of 5.61 days. The most common symptom was diplopia, especially binocular diplopia, and the majority of cases resolved without pharmacologic intervention. Considering the current opioid crisis, our systematic review and case report add valuable insight into the less-explored neurological and ophthalmological consequences of opiate withdrawal, a condition that should always be considered in cases of acute or chronic onset esotropia. Full article
Show Figures

Figure 1

38 pages, 22809 KiB  
Review
Nanoscale Cu2ZnSnSxSe(4−x) (CZTS/Se) for Sustainable Solutions in Renewable Energy, Sensing, and Nanomedicine
by Sayedmahdi Mohammadi, Navdeep Kaur and Daniela R. Radu
Crystals 2024, 14(5), 479; https://doi.org/10.3390/cryst14050479 (registering DOI) - 19 May 2024
Abstract
The importance and breadth of applications of the family of quaternary chalcogenides with the formula Cu2ZnSnSxSe(4−x) (CZTS/Se) where x = 0–4 are steadily expanding due to the tunable optoelectronic properties of these compounds and the Earth abundance of [...] Read more.
The importance and breadth of applications of the family of quaternary chalcogenides with the formula Cu2ZnSnSxSe(4−x) (CZTS/Se) where x = 0–4 are steadily expanding due to the tunable optoelectronic properties of these compounds and the Earth abundance of the elements in their composition. These p-type semiconductors are viewed as a viable alternative to Si, gallium arsenide, CdTe, and CIGS solar cells due to their cost effectiveness, Earth’s crust abundance, and non-toxic elements. Additionally, CZTS/Se compounds have demonstrated notable capabilities beyond solar cells, such as photoelectrochemical CO2 reduction, solar water splitting, solar seawater desalination, hydrogen production, and use as an antibacterial agent. Various routes have been explored for synthesizing pure CZTS/Se nanomaterials and significant efforts have been dedicated to reducing the occurrence of secondary phases. This review focuses on synthetic approaches for CZTS/Se nanomaterials, with emphasis on controlling the size and morphology of the nanoparticles and their recent application in solar energy harvesting and beyond, highlighting challenges in achieving the desired purity required in all these applications. Full article
(This article belongs to the Special Issue Semiconductor Nanocrystal Studies for Optoelectronic Applications)
Show Figures

Figure 1

22 pages, 5413 KiB  
Article
Adsorbent Biomaterials Based on Natural Clays and Orange Peel Waste for the Removal of Anionic Dyes from Water
by Sonia Mihai, Andreea Bondarev, Cătalina Călin and Elena-Emilia Sȋrbu
Processes 2024, 12(5), 1032; https://doi.org/10.3390/pr12051032 (registering DOI) - 19 May 2024
Abstract
This study demonstrates the efficient removal of Alizarin Yellow R anionic dye (AY) from aqueous solutions using green adsorbents. Natural kaolin clay (A1), acid-modified natural clay (A2), chemically treated orange peel (C1) and biochar produced by the thermal treatment of orange peel (C2) [...] Read more.
This study demonstrates the efficient removal of Alizarin Yellow R anionic dye (AY) from aqueous solutions using green adsorbents. Natural kaolin clay (A1), acid-modified natural clay (A2), chemically treated orange peel (C1) and biochar produced by the thermal treatment of orange peel (C2) were tested for the adsorption of AY. The characteristics of the sorbents were determined by instrumental methods: SEM, EDS, FTIR, BET and TGA. The adsorption experiments were performed under different conditions, including the initial AY dye concentration, adsorbent weight, pH, temperature and contact time. The maximum adsorption capacities had values between 15.72 and 74.62 mg/g at 298 K and the optimal pH of 6.5 at initial concentrations ranging from 30 to 70 mg/L for all adsorbents. The equilibrium data were used for the adsorption isotherm models: Freundlich, Langmuir and Temkin. The Freundlich model fit best for the adsorbents A2, C1 and C2, and the Langmuir isotherm had the highest regression value for the adsorbent A1 (R2 = 0.9935). Thermodynamic parameters indicated the spontaneous and favorable adsorption process of AY. A study of the adsorption kinetics proved that they best fit the pseudo-second-order model, with the highest coefficients of determination (R2), outperforming the pseudo-first-order model. The results of this study indicate the potential for the valorization of locally available clays and orange peel waste in the purification processes of water. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

12 pages, 6228 KiB  
Article
Construction of Monolayer Ti3C2Tx MXene on Nickel Foam under High Electrostatic Fields for High-Performance Supercapacitors
by Liyong Zhang, Jijie Chen, Guangzhi Wei, Han Li, Guanbo Wang, Tongjie Li, Juan Wang, Yehu Jiang, Le Bao and Yongxing Zhang
Nanomaterials 2024, 14(10), 887; https://doi.org/10.3390/nano14100887 (registering DOI) - 19 May 2024
Abstract
Ti3C2Tx MXene, as a common two-dimensional material, has a wide range of applications in electrochemical energy storage. However, the surface forces of few-layer or monolayer Ti3C2Tx MXene lead to easy agglomeration, which hinders [...] Read more.
Ti3C2Tx MXene, as a common two-dimensional material, has a wide range of applications in electrochemical energy storage. However, the surface forces of few-layer or monolayer Ti3C2Tx MXene lead to easy agglomeration, which hinders the demonstration of its performance due to the characteristics of layered materials. Herein, we report a facile method for preparing monolayer Ti3C2Tx MXene on nickel foam to achieve a self-supporting structure for supercapacitor electrodes under high electrostatic fields. Moreover, the specific capacitance varies with the deposition of different-concentration monolayer Ti3C2Tx MXene on nickel foam. As a result, Ti3C2Tx/NF has a high specific capacitance of 319 mF cm−2 at 2 mA cm−2 and an excellent long-term cycling stability of 94.4% after 7000 cycles. It was observed that the areal specific capacitance increases, whereas the mass specific capacitance decreases with the increasing loading mass. Attributable to the effect of the high electrostatic field, the self-supporting structure of the Ti3C2Tx/NF becomes denser as the concentration of the monolayer Ti3C2Tx MXene ink increases, ultimately affecting its electrochemical performance. This work provides a simple way to overcome the agglomeration problem of few-layer or monolayer MXene, then form a self-supporting electrode exhibiting excellent electrochemical performance. Full article
(This article belongs to the Special Issue Nanomaterials for Supercapacitors)
Show Figures

Figure 1

11 pages, 400 KiB  
Article
Applying Resistant Starch to Improve the Gel and Water Retention of Reduced-Fat Pork Batter
by Chun Xie, Guang-Hui Liu, Ming-Hui Liang, Si-Han Li and Zhuang-Li Kang
Gels 2024, 10(5), 347; https://doi.org/10.3390/gels10050347 (registering DOI) - 19 May 2024
Abstract
Emulsified meat products contain high animal fat content, and excessive intake of animal fat is not good for health, so people are paying more and more attention to reduced-fat meat products. This study investigated the impact of varying proportions of pork back-fat and/or [...] Read more.
Emulsified meat products contain high animal fat content, and excessive intake of animal fat is not good for health, so people are paying more and more attention to reduced-fat meat products. This study investigated the impact of varying proportions of pork back-fat and/or resistant starch on the proximate composition, water and fat retention, texture properties, color, and rheology characteristic of pork batter. The results found that replacing pork back-fat with resistant starch and ice water significantly decreased the total lipid and energy contents of cooked pork batter (p < 0.05) while improving emulsion stability, cooking yield, texture, and rheology properties. Additionally, when the pork back-fat replacement ratio was no more than 50%, there was a significant increase in emulsion stability, cooking yield, hardiness, springiness, cohesiveness, chewiness, and L* and G’ values (p < 0.05). Furthermore, resistant starch and ice water enhanced myosin head and tail thermal stability and increased G’ value at 80 °C. However, the initial relaxation times significantly decreased (p < 0.05) and the peak ratio of P21 significantly increased from 84.62% to 94.03%, suggesting reduced fluidity of water. In conclusion, it is feasible to use resistant starch and ice water as a substitute for pork back-fat in order to produce reduced-fat pork batter with favorable gel and rheology properties. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels)
35 pages, 1750 KiB  
Article
The Past, Present, and Future of the Internet: A Statistical, Technical, and Functional Comparison of Wired/Wireless Fixed/Mobile Internet
by Shahriar Shirvani Moghaddam
Electronics 2024, 13(10), 1986; https://doi.org/10.3390/electronics13101986 (registering DOI) - 19 May 2024
Abstract
This paper examines the quantitative and qualitative situation of the current fixed and mobile Internet and its expected future. It provides a detailed insight into the past, present, and future of the Internet along with the development of technology and the problems that [...] Read more.
This paper examines the quantitative and qualitative situation of the current fixed and mobile Internet and its expected future. It provides a detailed insight into the past, present, and future of the Internet along with the development of technology and the problems that have arisen in accessing and using broadband Internet. First, the number of users and penetration rate of the Internet, the various types of services in different countries, the ranking of countries in terms of the mean and median download and upload Internet data speeds, Internet data volume, and number and location of data centers in the world are presented. The second task introduces and details twelve performance evaluation metrics for broadband Internet access. Third, different wired and wireless Internet technologies are introduced and compared based on data rate, coverage, type of infrastructure, and their advantages and disadvantages. Based on the technical and functional criteria, in the fourth work, two popular wired and wireless Internet platforms, one based on optical fiber and the other based on the 5G cellular network, are compared in the world in general and Australia in particular. Moreover, this paper has a look at Starlink as the latest satellite Internet candidate, especially for rural and remote areas. The fifth task outlines the latest technologies and emerging broadband Internet-based services and applications in the spotlight. Sixthly, it focuses on three problems in the future Internet in the world, namely the digital divide due to the different qualities of available Internet and new Internet-based services and applications of emerging technologies, the impact of the Internet on social interactions, and hacking and insecurity on the Internet. Finally, some solutions to these problems are proposed. Full article
Show Figures

Figure 1

39 pages, 3140 KiB  
Article
Can Digital Finance Enable China’s Industrial Carbon Unlocking under Environmental Regulatory Constraints? Joint Tests of Regression Analysis and Qualitative Comparative Analysis
by Weicheng Xu and Hanxia Li
Sustainability 2024, 16(10), 4288; https://doi.org/10.3390/su16104288 (registering DOI) - 19 May 2024
Abstract
Sustainable development goals challenge the carbon lock-in dilemma of the industrial economy, and identifying the motivation and mechanism behind carbon unlocking has become an urgent priority. With its inclusive and precise advantages, digital finance (DF) provides a new impetus for the economy’s low-carbon [...] Read more.
Sustainable development goals challenge the carbon lock-in dilemma of the industrial economy, and identifying the motivation and mechanism behind carbon unlocking has become an urgent priority. With its inclusive and precise advantages, digital finance (DF) provides a new impetus for the economy’s low-carbon transformation, while reasonable environmental regulation (ER) acts as an important guiding constraint. We focus on the carbon unlocking performance of DF under ER constraints. After constructing and calculating the industrial carbon unlocking efficiency (ICUE), we observe the trends of ICUE fluctuating positively, clustering towards the eastern region, and polarization. Subsequently, based on theoretical analyses, we explore the marginal and configuration effects of DF and ER in improving ICUE using panel data from 30 Chinese provinces between 2011 and 2021 and adopt a mixed research method with regression analysis (Tobit hierarchical regression and quantile regression for panel data (QRPD)) and dynamic fuzzy-set qualitative comparative analysis (fsQCA). The regression analysis results show that DF can notably enhance China’s provincial ICUE, with ER generally serving as a positive moderator; however, the unlocking potential of informal environmental regulations needs further exploration. As ICUE improves in a specific location or time, the positive contribution of DF to ICUE also increases, whereas the moderating effect of ER exhibits an optimal range and follows an inverted U-shape. The dynamic fsQCA results support the findings of the regression analysis and further emphasize that effective cooperation between DF and ER is crucial for high ICUE, while inadequate DF support and the absence of formal environmental regulations remain bottlenecks in industrial carbon lock-in. Moreover, configuration paths demonstrate clear path dependency in both time and space, indicating a prolonged unlocking endeavor. Full article
(This article belongs to the Special Issue Sustainable Growth and Carbon Neutrality)
33 pages, 1127 KiB  
Article
Conceptual Models of Franchisee Behaviors in the Dietary Supplements and Cosmetics to Imply the Business Investments
by Patcharapol Suttidharm and Adisorn Leelasantitham
Sustainability 2024, 16(10), 4287; https://doi.org/10.3390/su16104287 (registering DOI) - 19 May 2024
Abstract
Franchise businesses have demonstrated resilience before, through, and after the circumstances of COVID-19. This can be attributed to the inherent appeal of rapid success and risk mitigation for investors. Therefore, investors are attached to engaging in a franchise business model. Fierce competition exists [...] Read more.
Franchise businesses have demonstrated resilience before, through, and after the circumstances of COVID-19. This can be attributed to the inherent appeal of rapid success and risk mitigation for investors. Therefore, investors are attached to engaging in a franchise business model. Fierce competition exists among franchise businesses, with numerous brands within the same industry, especially the cosmetic and dietary supplement franchise category, which has garnered significant popularity in Southeast Asia, particularly Thailand. The expansion of this franchise category has accelerated, surpassing the growth rates observed in other countries. Investment decisions across various investor levels are influenced by diverse factors, including intense competition, contributing to the rapid expansion. Therefore, a comprehensive study and understanding of the investment behavior of cosmetic and dietary supplement franchise businesses has become imperative. The success of a franchise business hinges on different factors encompassing decisions made before, during, and after investments. This study delves into the decision-making behaviors preceding and following investments across different investor levels in the cosmetics and dietary supplement franchise industry, utilizing fundamental aspects derived from rational choice theory (RCT) and additional variables. The researcher gathered responses through questionnaires from 490 respondents with investment experience in the cosmetics and dietary supplement franchise business. The study revealed that factors postulated in this study significantly influenced investment choices within cosmetics and dietary supplement franchises. When segmented based on investor levels, distinct considerations emerged for each group. Furthermore, there is a compelling need for cosmetic and dietary supplement franchise owners to implement enhancements in services to uphold and expand investor bases, representing an intense challenge in the cosmetics and dietary supplement franchise business nowadays. This study is intended only for individuals with prior investment experience in the cosmetics and dietary supplement franchise industry. It focuses on examining the factors that influence investment decisions both before and after the initial investment, particularly with regard to dietary supplement and cosmetics franchises. Full article
(This article belongs to the Special Issue Sustainable Management and Consumer Behavior Studies)
24 pages, 2833 KiB  
Review
A Comprehensive Review of Plant-Based Biopolymers as Viscosity-Modifying Admixtures in Cement-Based Materials
by Yousra Boutouam, Mahmoud Hayek, Kamal Bouarab and Ammar Yahia
Appl. Sci. 2024, 14(10), 4307; https://doi.org/10.3390/app14104307 (registering DOI) - 19 May 2024
Abstract
As the construction industry is facing the challenge of meeting the ever-increasing demand for environmentally friendly and durable concrete, the role of viscosity-modifying admixtures (VMAs) has become increasingly essential to improve the rheological properties, stability, and mechanical properties of concrete. Additionally, natural polymers [...] Read more.
As the construction industry is facing the challenge of meeting the ever-increasing demand for environmentally friendly and durable concrete, the role of viscosity-modifying admixtures (VMAs) has become increasingly essential to improve the rheological properties, stability, and mechanical properties of concrete. Additionally, natural polymers are ever evolving, offering multiple opportunities for innovative applications and sustainable solutions. This comprehensive review delves into the historical context and classifications of VMAs, accentuating their impact in enhancing the rheological properties, stability, and mechanical properties of concrete. Emphasis is placed on the environmental impact of synthetic VMAs, promoting the exploration of sustainable alternatives derived from plant-based biopolymers. Indeed, biopolymers, such as cellulose, starch, alginate, pectin, and carrageenan are considered in this paper, focusing on understanding their efficacy in improving concrete properties while enhancing the environmental sustainability within the concrete. Full article
(This article belongs to the Special Issue Innovative Building Materials for Sustainable Built Environment)
Show Figures

Figure 1

16 pages, 9672 KiB  
Article
Experimental Evaluation of a Granular Damping Element
by Sanel Avdić, Marko Nagode, Jernej Klemenc and Simon Oman
Polymers 2024, 16(10), 1440; https://doi.org/10.3390/polym16101440 (registering DOI) - 19 May 2024
Abstract
Due to their advantages—longer internal force delay compared to bulk materials, resistance to harsh conditions, damping of a wide frequency spectrum, insensitivity to ambient temperature, high reliability and low cost—granular materials are seen as an opportunity for the development of high-performance, lightweight vibration-damping [...] Read more.
Due to their advantages—longer internal force delay compared to bulk materials, resistance to harsh conditions, damping of a wide frequency spectrum, insensitivity to ambient temperature, high reliability and low cost—granular materials are seen as an opportunity for the development of high-performance, lightweight vibration-damping elements (particle dampers). The performance of particle dampers is affected by numerous parameters, such as the base material, the size of the granules, the flowability, the initial prestress, etc. In this work, a series of experiments were performed on specimens with different combinations of influencing parameters. Energy-based design parameters were used to describe the overall vibration-damping performance. The results provided information for a deeper understanding of the dissipation mechanisms and their mutual correlation, as well as the influence of different parameters (base material, granule size and flowability) on the overall damping performance. A comparison of the performance of particle dampers with carbon steel and polyoxymethylene granules and conventional rubber dampers is given. The results show that the damping performance of particle dampers can be up to 4 times higher compared to conventional bulk material-based rubber dampers, even though rubber as a material has better vibration-damping properties than the two granular materials in particle dampers. However, when additional design features such as mass and stiffness are introduced, the results show that the overall performance of particle dampers with polyoxymethylene granules can be up to 3 times higher compared to particle dampers with carbon steel granules and conventional bulk material-based rubber dampers. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 1184 KiB  
Article
Research on CC-SSBLS Model-Based Air Quality Index Prediction
by Lin Wang, Yibing Wang, Jian Chen, Shuangqing Zhang and Lanhong Zhang
Atmosphere 2024, 15(5), 613; https://doi.org/10.3390/atmos15050613 (registering DOI) - 19 May 2024
Abstract
Establishing reliable and effective prediction models is a major research priority for air quality parameter monitoring and prediction and is utilized extensively in numerous fields. The sample dataset of air quality metrics often established has missing data and outliers because of certain uncontrollable [...] Read more.
Establishing reliable and effective prediction models is a major research priority for air quality parameter monitoring and prediction and is utilized extensively in numerous fields. The sample dataset of air quality metrics often established has missing data and outliers because of certain uncontrollable causes. A broad learning system based on a semi-supervised mechanism is built to address some of the dataset’s data-missing issues, hence reducing the air quality model prediction error. Several air parameter sample datasets in the experiment were discovered to have outlier issues, and the anomalous data directly impact the prediction model’s stability and accuracy. Furthermore, the correlation entropy criteria perform better when handling the sample data’s outliers. Therefore, the prediction model in this paper consists of a semi-supervised broad learning system based on the correlation entropy criterion (CC-SSBLS). This technique effectively solves the issue of unstable and inaccurate prediction results due to anomalies in the data by substituting the correlation entropy criterion for the mean square error criterion in the BLS algorithm. Experiments on the CC-SSBLS algorithm and comparative studies with models like Random Forest (RF), Support Vector Regression (V-SVR), BLS, SSBLS, and Categorical and Regression Tree-based Broad Learning System (CART-BLS) were conducted using sample datasets of air parameters in various regions. In this paper, the root mean square error (RMSE) and mean absolute percentage error (MAPE) are used to judge the advantages and disadvantages of the proposed model. Through the experimental analysis, RMSE and MAPE reached 8.68 μg·m−3 and 0.24% in the Nanjing dataset. It is possible to conclude that the CC-SSBLS algorithm has superior stability and prediction accuracy based on the experimental results. Full article
16 pages, 4708 KiB  
Article
Hydrogen Sulfide Increases Drought Tolerance by Modulating Carbon and Nitrogen Metabolism in Foxtail Millet Seedlings
by Juan Zhao, Shifang Zhang, Xiaoxiao Yang, Ke Feng, Guo Wang, Qifeng Shi, Xinru Wang, Xiangyang Yuan and Jianhong Ren
Agronomy 2024, 14(5), 1080; https://doi.org/10.3390/agronomy14051080 (registering DOI) - 19 May 2024
Abstract
Hydrogen sulfide (H2S), a novel gas signaling molecule, has been shown to enhance plant resistance to various abiotic stresses. Here, we investigated the effect of sodium hydrosulfide (NaHS, a H2S donor) on the growth, photosynthetic parameters, and enzyme activities [...] Read more.
Hydrogen sulfide (H2S), a novel gas signaling molecule, has been shown to enhance plant resistance to various abiotic stresses. Here, we investigated the effect of sodium hydrosulfide (NaHS, a H2S donor) on the growth, photosynthetic parameters, and enzyme activities related to carbon and nitrogen metabolism, as well as the levels of carbohydrates and nitrogen metabolites in foxtail millet seedlings subjected to drought stress conditions in pots. The findings revealed that drought stress led to a significant 41.2% decline in the total dry weight (DW) after 12 days of treatment, whereas plants treated with NaHS showed a lesser reduction of 18.7% in total DW. Under drought stress, exogenous NaHS was found to enhance carbon metabolism in foxtail millet seedlings by significantly enhancing photosynthetic capacity, starch, and sucrose content. Additionally, exogenous NaHS was observed to improve nitrogen metabolism by substantially increasing soluble protein content, nitrogen assimilate activity, and synthesis of nitrogen-containing compounds in foxtail millet seedlings. In summary, the exogenous application of NaHS stimulated seedling growth and enhanced drought resistance in foxtail millet by modulating carbon and nitrogen metabolism processes affected by drought stress. Full article
Show Figures

Figure 1

20 pages, 10664 KiB  
Article
Research on NaCl-KCl High-Temperature Thermal Storage Composite Phase Change Material Based on Modified Blast Furnace Slag
by Gai Zhang, Hui Cui, Xuecheng Hu, Anchao Qu, Hao Peng and Xiaotian Peng
Energies 2024, 17(10), 2430; https://doi.org/10.3390/en17102430 (registering DOI) - 19 May 2024
Abstract
The high-temperature composite phase change materials (HCPCMs) were prepared from solid waste blast furnace slag (BFS) and NaCl-KCl binary eutectic salt to achieve efficient and cost-effective utilization. To ensure good chemical compatibility with chlorine salt, modifier fly ash (FA) was incorporated and subjected [...] Read more.
The high-temperature composite phase change materials (HCPCMs) were prepared from solid waste blast furnace slag (BFS) and NaCl-KCl binary eutectic salt to achieve efficient and cost-effective utilization. To ensure good chemical compatibility with chlorine salt, modifier fly ash (FA) was incorporated and subjected to high-temperature treatment for the processing of industrial solid waste BFS, which possesses a complex chemical composition. The HCPCMs were synthesized through a three-step process involving static melting, solid waste modification, and mixing–cold pressing–sintering. Then, the influence of the modification method and the amount of SiC thermal conductivity reinforced material on chemical compatibility and thermodynamic performance was explored. The results demonstrate that the predominant phase of the modified solid waste is Ca2Al2SiO7, which exhibits excellent chemical compatibility with chlorine salt. HCPCMs containing less than 50 wt.% chloride content exhibit good morphological stability without any cracks, with a melting temperature of 661.76 °C and an enthalpy value of 108.73 J/g. Even after undergoing 60 thermal cycles, they maintain good chemical compatibility, with leakage rates for melting and solidification enthalpies being only 6.3% and 0.23%, respectively. The equilibrium was achieved when 40 wt.% of chloride salt was encapsulated upon the addition of 10% of SiC, and the incorporation of SiC resulted in an enhancement of thermal conductivity for HCPCMs to 2.959 W/(m·K) at room temperature and 2.400 W/(m·K) at 200 °C, with an average increase of about 2 times. The cost of the prepared HCPCMs experienced a significant reduction of 81.3%, demonstrating favorable economic performance and promising prospects for application. The research findings presented in this article can offer significant insights into the efficient utilization of solid waste. Full article
(This article belongs to the Special Issue Advanced Applications of Solar and Thermal Storage Energy)
Show Figures

Figure 1

13 pages, 748 KiB  
Article
The Effect of 14-Day Consumption of Hydrogen-Rich Water Alleviates Fatigue but Does Not Ameliorate Dyspnea in Long-COVID Patients: A Pilot, Single-Blind, and Randomized, Controlled Trial
by Yineng Tan, Yixun Xie, Gengxin Dong, Mingyue Yin, Zhangyuting Shang, Kaixiang Zhou, Dapeng Bao and Junhong Zhou
Nutrients 2024, 16(10), 1529; https://doi.org/10.3390/nu16101529 (registering DOI) - 19 May 2024
Abstract
(1) Background: Hydrogen (H2) may be a potential therapeutic agent for managing Long COVID symptoms due to its antioxidant and anti-inflammatory properties. However, more scientific literature is needed to describe the effects of H2 administration on treating symptoms. A study [...] Read more.
(1) Background: Hydrogen (H2) may be a potential therapeutic agent for managing Long COVID symptoms due to its antioxidant and anti-inflammatory properties. However, more scientific literature is needed to describe the effects of H2 administration on treating symptoms. A study aimed to investigate the impact of hydrogen-rich water (HRW) administration on the fatigue and dyspnea of Long-COVID patients for 14 consecutive days. (2) Methods: In this randomized, single-blind, placebo-controlled study, 55 participants were recruited, and 23 of them were excluded. A total of 32 eligible participants were randomized into a hydrogen-rich water (HRW) group (n = 16) and a placebo water (PW) group (n = 16) in which they were instructed to consume hydrogen-rich water or placebo water for 14 days, respectively. The participants completed the Fatigue Severity Scale (FSS), Six-Minute Walk Test (6MWT), 30 s Chair Stand Test (30s-CST), Modified Medical Research Council Dyspnea Rating Scale (mMRC), Pittsburgh Sleep Quality Index (PSQI), and depression anxiety stress scale (DASS-21) before and after the intervention. A linear mixed-effects model was used to analyze the effects of HRW. Cohen’s d values were used to assess the effect size when significance was observed. The mean change with 95% confidence intervals (95% CI) was also reported. (3) Results: The effects of HRW on lowering FSS scores (p = 0.046, [95% CI = −20.607, −0.198, d = 0.696] and improving total distance in the 6WMT (p < 0.001, [95% CI = 41.972, 61.891], d = 1.010), total time for the 30s-CST (p = 0.002, [95% CI = 1.570, 6.314], d = 1.190), and PSQI scores (p = 0.012, [95% CI = −5.169, 0.742], d = 1.274) compared to PW were of a significantly moderate effect size, while there was no significant difference in mMRC score (p = 0.556) or DASS-21 score (p > 0.143). (4) Conclusions: This study demonstrates that HRW might be an effective strategy for alleviating fatigue and improving cardiorespiratory endurance, musculoskeletal function, and sleep quality. Still, it does not ameliorate dyspnea among Long-COVID patients. Full article
(This article belongs to the Section Nutritional Epidemiology)
14 pages, 2585 KiB  
Review
Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells
by Moulay Ahmed Slimani, Sylvain G. Cloutier and Ricardo Izquierdo
Nanomaterials 2024, 14(10), 886; https://doi.org/10.3390/nano14100886 (registering DOI) - 19 May 2024
Abstract
Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition [...] Read more.
Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition under ambient conditions requires overcoming some challenges to improve stability and efficiency. In this review, we highlight the latest advancements in photonic curing (PC) for perovskite materials, as well as for hole transport layer (HTL) and electron transport layer (ETL) materials. We present how PC parameters can be used to control the optical, electrical, morphological, and structural properties of perovskite HTL and ETL layers. Emphasizing the significance of these advancements for perovskite solar cells could further highlight the importance of this research and underline its essential role in creating more efficient and sustainable solar technology. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
18 pages, 3039 KiB  
Article
Balancing Data Acquisition Benefits and Ordering Costs for Predictive Supplier Selection and Order Allocation
by Alberto Regattieri, Matteo Gabellini, Francesca Calabrese, Lorenzo Civolani and Francesco Gabriele Galizia
Appl. Sci. 2024, 14(10), 4306; https://doi.org/10.3390/app14104306 (registering DOI) - 19 May 2024
Abstract
The strategic selection of suppliers and the allocation of orders across multiple periods have long been recognized as critical aspects influencing company expenditure and resilience. Leveraging the enhanced predictive capabilities afforded by machine learning models, direct lookahead models—linear programming models that optimize future [...] Read more.
The strategic selection of suppliers and the allocation of orders across multiple periods have long been recognized as critical aspects influencing company expenditure and resilience. Leveraging the enhanced predictive capabilities afforded by machine learning models, direct lookahead models—linear programming models that optimize future decisions based on forecasts generated by external predictive modules—have emerged as viable alternatives to traditional deterministic and stochastic programming methodologies to solve related problems. However, despite these advancements, approaches implementing direct lookahead models typically lack mechanisms for updating forecasts over time. Yet, in practice, suppliers often exhibit dynamic behaviours, and failing to update forecasts can lead to suboptimal decision-making. This study introduces a novel approach based on parametrized direct lookahead models to address this gap. The approach explicitly addresses the hidden trade-offs associated with incorporating forecast updates. Recognizing that forecasts can only be updated by acquiring new data and that the primary means of acquiring supplier-related data is through order allocation, this study investigates the trade-offs between data acquisition benefits and order allocation costs. An experimental design utilizing real-world automotive sector data is employed to assess the potential of the proposed approach against various benchmarks. These benchmarks include decision scenarios representing perfect foresight, no data acquisition benefits, and consistently positive benefits. Empirical findings demonstrate that the proposed approach achieves performance levels comparable to those of decision-makers with perfect foresight while consistently outperforming benchmarks not balancing order allocation costs and data acquisition benefits. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 5316 KiB  
Article
Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism
by Zhenhao Sun, Yunjiang Yin, Baoguo Liu, Tao Xue and Qiang Zou
Sensors 2024, 24(10), 3232; https://doi.org/10.3390/s24103232 (registering DOI) - 19 May 2024
Abstract
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel [...] Read more.
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO4 and propose a self-calibration compensation strategy. The strategy utilizes a metal salt solution to adjust the carrier concentration of the hydrogel to mitigate the resistance drift phenomenon to improve the stability and accuracy of hydrogel sensors in amphibious scenarios, such as land and water. The ExpGrow model was used to characterize the trend of the ∆R/R0 dynamic response curves of the hydrogels in the stress tests, and the average deviation of the fitted curves ` was calculated to quantify the stability differences of different groups. The results showed that the stability of the uncompensated group was much lower than that of the compensated group utilizing LiCl, NaCl, KCl, MgCl2, and AlCl3 solutions (` in the uncompensated group in air was 276.158, 1.888, 2.971, 30.586, and 13.561 times higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2, and AlCl3, respectively;` in the uncompensated group in seawater was 10.287 times, 1.008 times, 1.161 times, 4.986 times, 1.281 times, respectively, higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2 and AlCl3). In addition, for the ranking of the compensation effect of different compensation solutions, the concentration of the compensation solution and the ionic radius and charge of the cation were found to be important factors in determining the compensation effect. Detection of events in amphibious environments such as swallowing, robotic arm grasping, Morse code, and finger–wrist bending was also performed in this study. This work provides a viable method for stability and accuracy enhancement of dual-network hydrogel sensors with strain and pressure sensing capabilities and offers solutions for sensor applications in both airborne and underwater amphibious environments. Full article
26 pages, 2556 KiB  
Article
Simultaneous Localization and Mapping System for Agricultural Yield Estimation Based on Improved VINS-RGBD: A Case Study of a Strawberry Field
by Quanbo Yuan, Penggang Wang, Wei Luo, Yongxu Zhou, Hongce Chen and Zhaopeng Meng
Agriculture 2024, 14(5), 784; https://doi.org/10.3390/agriculture14050784 (registering DOI) - 19 May 2024
Abstract
Crop yield estimation plays a crucial role in agricultural production planning and risk management. Utilizing simultaneous localization and mapping (SLAM) technology for the three-dimensional reconstruction of crops allows for an intuitive understanding of their growth status and facilitates yield estimation. Therefore, this paper [...] Read more.
Crop yield estimation plays a crucial role in agricultural production planning and risk management. Utilizing simultaneous localization and mapping (SLAM) technology for the three-dimensional reconstruction of crops allows for an intuitive understanding of their growth status and facilitates yield estimation. Therefore, this paper proposes a VINS-RGBD system incorporating a semantic segmentation module to enrich the information representation of a 3D reconstruction map. Additionally, image matching using L_SuperPoint feature points is employed to achieve higher localization accuracy and obtain better map quality. Moreover, Voxblox is proposed for storing and representing the maps, which facilitates the storage of large-scale maps. Furthermore, yield estimation is conducted using conditional filtering and RANSAC spherical fitting. The results show that the proposed system achieves an average relative error of 10.87% in yield estimation. The semantic segmentation accuracy of the system reaches 73.2% mIoU, and it can save an average of 96.91% memory for point cloud map storage. Localization accuracy tests on public datasets demonstrate that, compared to Shi–Tomasi corner points, using L_SuperPoint feature points reduces the average ATE by 1.933 and the average RPE by 0.042. Through field experiments and evaluations in a strawberry field, the proposed system demonstrates reliability in yield estimation, providing guidance and support for agricultural production planning and risk management. Full article
(This article belongs to the Topic Current Research on Intelligent Equipment for Agriculture)
23 pages, 5960 KiB  
Systematic Review
Systematic Review of Beta-Lactam vs. Beta-Lactam plus Aminoglycoside Combination Therapy in Neutropenic Cancer Patients
by Kazuhiro Ishikawa, Tomoaki Nakamura, Fujimi Kawai, Erika Ota and Nobuyoshi Mori
Cancers 2024, 16(10), 1934; https://doi.org/10.3390/cancers16101934 (registering DOI) - 19 May 2024
Abstract
We performed a systematic review of studies that compared beta-lactams vs. beta-lactams plus aminoglycosides for the treatment of febrile neutropenia in cancer patients. Method: We searched CENTRAL, MEDLINE, and Embase for studies published up to October 2023, and randomized controlled trials (RCTs) that [...] Read more.
We performed a systematic review of studies that compared beta-lactams vs. beta-lactams plus aminoglycosides for the treatment of febrile neutropenia in cancer patients. Method: We searched CENTRAL, MEDLINE, and Embase for studies published up to October 2023, and randomized controlled trials (RCTs) that compared anti-Pseudomonas aeruginosa beta-lactam monotherapy with any combination of an anti-Pseudomonas aeruginosa beta-lactam and an aminoglycoside were included. Result: The all-cause mortality rate of combination therapy showed no significant differences compared with that of monotherapy (RR 0.99, 95% CI 0.84 to 1.16, high certainty of evidence). Infection-related mortality rates showed that combination therapy had a small positive impact compared with the intervention with monotherapy (RR 0.83, 95% CI 0.66 to 1.05, high certainty of evidence). Regarding treatment failure, combination therapy showed no significant differences compared with monotherapy (RR 0.99, 95% CI 0.94 to 1.03, low certainty of evidence). In the sensitivity analysis, the treatment failure data published between 2010 and 2019 showed better outcomes in the same beta-lactam group (RR 1.10 [95% CI, 1.01–1.19]). Renal failure was more frequent with combination therapy of any daily dosing regimen (RR 0.46, 95% CI 0.36 to 0.60, high certainty of evidence). Conclusion: We found combining aminoglycosides with a narrow-spectrum beta-lactam did not spare the use of broad-spectrum antibiotics. Few studies included antibiotic-resistant bacteria and a detailed investigation of aminoglycoside serum levels, and studies that combined the same beta-lactams showed only a minimal impact with the combination therapy. In the future, studies that include the profile of antibiotic-resistant bacteria and the monitoring of serum aminoglycoside levels will be required. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop