Skip to main content
Log in

Development of a specific marker for detection of a functional AvrLm9 allele and validating the interaction between AvrLm7 and AvrLm9 in Leptosphaeria maculans

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Blackleg, which is caused by the fungus Leptosphaeria maculans (L. maculans), is a major disease of canola in western Canada and worldwide. Long-term use of one source of resistance could cause the breakdown of its effectiveness. Therefore, appropriate use of R genes is very important, and knowledge about the distribution of avirulence genes is a prerequisite for effectively deploying resistance. Of the 14 avirulence genes identified in L. maculans, AvrLm5 and AvrLm9 were recognized as the two alleles of the same gene based on two single nucleotide polymorphisms, C85T and G164A/C. In this study, a specific marker was developed to identify AvrLm5 and AvrLm9 based on two single nucleotide polymorphisms, C85T and G164A/C, which are responsible for the function of AvrLm9. The specific marker can be used to discriminate the AvrLm9 from avrLm9 accurately in L. maculans isolates, which is consistent with inoculation tests in isolates without AvrLm4-7. This specific marker was used to screen 1229 isolates collected from fields in the years 2014 through 2016 in Manitoba. From 68 to 84% of the isolates were found to contain the AvrLm9 allele; while 4–7% of them were avirulent on the variety Goéland with Rlm9 loci. Furthermore, no isolates having both AvrLm9 and AvrLm7 were detected using a cotyledon test, while 67% to 84% of isolates contained both avirulence genes via PCR detection, implying suppression of AvrLm9 by AvrLm7. In addition, avirulence gene profiles of the other 10 avirulence alleles were examined with the 1229 isolates using cotyledon tests or PCR amplifications. Taken together, this research enables the fast identification of AvrLm5/9, provides the Avr genes’ landscape of western Canada and elaborates the relationship between AvrLm9 and AvrLm7 using isolates from grower fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fitt BD, Brun H, Barbetti M, Rimmer S (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). In: Sustainable strategies for managing Brassica napus (oilseed rape) resistance to Leptosphaeria maculans (phoma stem canker). Springer, pp 3–15

  2. Kutcher H, Brandt S, Smith E, Ulrich D, Malhi S, Johnston A (2013) Blackleg disease of canola mitigated by resistant cultivars and four-year crop rotations in western Canada. Can J Plant Path 35(2):209–221

    Google Scholar 

  3. Balesdent M, Attard A, Ansan-Melayah D, Delourme R, Renard M, Rouxel T (2001) Genetic control and host range of avirulence toward Brassica napus cultivars Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology 91(1):70–76

    CAS  PubMed  Google Scholar 

  4. Delourme R, Chevre A, Brun H, Rouxel T, Balesdent M, Dias J, Salisbury P, Renard M, Rimmer S (2006) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114(1):41–52

    Google Scholar 

  5. Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux M, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27(3):271–287

    Google Scholar 

  6. Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can J Plant Path 28(S1):S288–S297

    CAS  Google Scholar 

  7. Pilet M, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet 96(1):23–30

    Google Scholar 

  8. Jestin C, Bardol N, Lode M, Duffe P, Domin C, Vallée P, Mangin B, Manzanares-Dauleux M, Delourme R (2015) Connected populations for detecting quantitative resistance factors to Phoma stem canker in oilseed rape (Brassica napus L). Mol Breed 35(8):1–16

    Google Scholar 

  9. Ferreira M, Rimmer S, Williams P, Osborn T (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85(2):213–217

    CAS  Google Scholar 

  10. Mayerhofer R, Good A, Bansal V, Thiagarajah M, Stringam G (1997) Molecular mapping of resistance to Leptosphaeria maculans in Australian cultivars of Brassica napus. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada 40 (3):294–301

  11. Ansan-Melayah D, Balesdent M, Delourme R, Pilet M, Tanguy X, Renard M, Rouxel T (1998) Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breed. 117(4):373–378

    Google Scholar 

  12. Zhu B, Rimmer SR (2003) Inheritance of resistance to Leptosphaeria maculans in two accessions of Brassica napus. Can J Plant Path 25(1):98–103

    Google Scholar 

  13. Balesdent M, Attard A, Kühn M, Rouxel T (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology 92(10):1122–1133

    CAS  PubMed  Google Scholar 

  14. Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol 198(3):887–898

    CAS  PubMed  Google Scholar 

  15. Chèvre A, Barret P, Eber F, Dupuy P, Brun H, Tanguy X, Renard M (1997) Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet 95(7):1104–1111

    Google Scholar 

  16. Yu F, Lydiate D, Rimmer S (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet 110(5):969–979

    CAS  PubMed  Google Scholar 

  17. Yu F, Lydiate DJ, Rimmer SR (2007) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada 51 (1):64–72

  18. Van de Wouw A, Marcroft S, Barbetti M, Hua L, Salisbury P, Gout L, Rouxel T, Howlett B, Balesdent M (2009) Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with ‘sylvestris-derived’resistance suggests involvement of two resistance genes. Plant Pathol 58(2):305–313

    Google Scholar 

  19. Long Y, Wang Z, Sun Z, Fernando DW, McVetty PB, Li G (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘Surpass 400’. Theor Appl Genet 122(6):1223–1231

    PubMed  Google Scholar 

  20. Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel T (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60(1):67–80

    CAS  PubMed  Google Scholar 

  21. Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent MH, Profotova B, Fernando W, Rouxel T, Borhan MH (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Mol Plant Pathol 16(7):699–709

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent MH (2016) A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol 209(4):1613–1624

    CAS  PubMed  Google Scholar 

  23. Plissonneau C, Rouxel T, Chevre AM, Van De Wouw AP, Balesdent MH (2018) One gene-one name: the AvrLmJ1 avirulence gene of Leptosphaeria maculans is AvrLm5. Mol Plant Pathol 19(4):1012–1016. https://doi.org/10.1111/mpp.12574

    Article  CAS  PubMed  Google Scholar 

  24. Ghanbarnia K, Ma L, Larkan NJ, Haddadi P, Fernando WGD, Borhan MH (2018) Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. Mol Plant Pathol 19(7):1754–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Van de Wouw AP, Lowe RG, Elliott CE, Dubois DJ, Howlett BJ (2014) An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Mol Plant Pathol 15(5):523–530

    PubMed  Google Scholar 

  26. Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, Rouxel T (2009) Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Mol Microbiol 71(4):851–863

    CAS  PubMed  Google Scholar 

  27. Fudal I, Ross S, Gout L, Blaise F, Kuhn M, Eckert M, Cattolico L, Bernard-Samain S, Balesdent M, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol Plant Microbe Interact 20(4):459–470

    CAS  PubMed  Google Scholar 

  28. Newman PL, Bailey D (1987) Screening for resistance to canker (Leptosphaeria maculans) in winter oilseed rape (Brassica napus ssp. oleifera). Plant Pathol 36(3):346–354

    Google Scholar 

  29. McNabb W, Cvd B, Rimmer S (1993) Comparison of inoculation methods for selection of plants resistant to Leptosphaeria maculans in Brassica napus. Can J Plant Sci 73(4):1199–1207

    Google Scholar 

  30. Bansal V, Kharbanda P, Stringam G, Thiagarajah M, Tewari J (1994) A comparison of greenhouse and field screening methods for blackleg resistance in doubled haploid lines of Brassica napus. Plant Dis 78(3):276–281

    Google Scholar 

  31. Hammond-Kosack KE, Kanyuka K (2001) Resistance genes (R Genes) in plants. In: eLS. Wiley. https://doi.org/10.1002/9780470015902.a0020119

  32. Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent M-H (2003) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur J Plant Pathol 109(8):871–881

    CAS  Google Scholar 

  33. Li H, Sivasithamparam K, Barbetti M (2003) Breakdown of a Brassica rapa subsp. sylvestris single dominant blackleg resistance gene in B. napus rapeseed by Leptosphaeria maculans field isolates in Australia. Plant Dis 87(6):752–752

    CAS  PubMed  Google Scholar 

  34. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238

    CAS  Google Scholar 

  35. Gupta P, Roy J, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80(4):524–535

    CAS  Google Scholar 

  36. Plissonneau C, Blaise F, Ollivier B, Leflon M, Carpezat J, Rouxel T, Balesdent MH (2017) Unusual evolutionary mechanisms to escape effector-triggered immunity in the fungal phytopathogen Leptosphaeria maculans. Mol Ecol 26(7):2183–2198

    CAS  PubMed  Google Scholar 

  37. Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29(17):E88–88. https://doi.org/10.1093/nar/29.17.e88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Medrano RFV, de Oliveira CA (2014) Guidelines for the tetra-primer ARMS–PCR technique development. Mol Biotechnol 56(7):599–608

    CAS  PubMed  Google Scholar 

  39. Zhang X, Peng G, Kutcher HR, Balesdent M-H, Delourme R, Fernando WD (2016) Breakdown of Rlm3 resistance in the Brassica napus–Leptosphaeria maculans pathosystem in western Canada. Eur J Plant Pathol 145(3):659–674

    CAS  Google Scholar 

  40. Marcroft SJ, Elliott VL, Cozijnsen AJ, Salisbury PA, Howlett BJ, Van de Wouw AP (2012) Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes. Crop Pasture Sci 63(4):338–350

    CAS  Google Scholar 

  41. Liban SH, Cross DJ, Kutcher HR, Peng G, Fernando WGD (2016) Race structure and frequency of avirulence genes in the western Canadian Leptosphaeria maculans pathogen population, the causal agent of blackleg in brassica species. Plant Pathol 65(7):1161–1169. https://doi.org/10.1111/ppa.12489

    Article  CAS  Google Scholar 

  42. Delwiche P, Williams P (1979) Screening for resistance to blackleg of crucifers in the seedling stage. Cruciferae Newsl 4:24

    Google Scholar 

  43. Zou Z, Liu F, Fernando WD (2018) Rapid detection of Leptosphaeria maculans avirulence gene AvrLm4-7 conferring the avirulence/virulence specificity on Brassica napus using a tetra-primer ARMS-PCR. Eur J Plant Pathol 152(2):515–520

    CAS  Google Scholar 

  44. Gugel R, Petrie G (1992) History, occurrence, impact, and control of blackleg of rapeseed. Can J Plant Path 14(1):36–45

    Google Scholar 

  45. Pongam P, Osborn TC, Williams PH (1998) Genetic analysis and identification of amplified fragment length polymorphism markers linked to the alm1 avirulence gene of Leptosphaeria maculans. Phytopathology 88(10):1068–1072

    CAS  PubMed  Google Scholar 

  46. Sprague S, Marcroft S, Hayden H, Howlett B (2006) Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia. Plant Dis 90(2):190–198

    CAS  PubMed  Google Scholar 

  47. Brun H, Chèvre AM, Fitt BD, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185(1):285–299

    PubMed  Google Scholar 

  48. Delourme R, Bousset L, Ermel M, Duffe P, Besnard A-L, Marquer B, Fudal I, Linglin J, Chadoeuf J, Brun H (2014) Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infect Genet Evol 27:490–499

    CAS  PubMed  Google Scholar 

  49. Marcroft S, Van de Wouw A, Salisbury P, Potter T, Howlett B (2012) Effect of rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes on disease severity. Plant Pathol 61(5):934–944

    CAS  Google Scholar 

  50. Zhang X, Fernando WD (2018) Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Pasture Sci 69(1):40–47

    Google Scholar 

  51. Fernando WGD, Zhang X, Selin C, Zou Z, Liban SH, McLaren DL, Kubinec A, Parks PS, Rashid MH, Padmathilake KRE, Rong L, Yang C, Gnanesh BN, Huang S (2018) A Six-year investigation of the dynamics of Avirulence allele profiles, blackleg incidence, and mating type alleles of Leptosphaeria maculans populations associated with canola crops in Manitoba. Can Plant Dis 102(4):790–798. https://doi.org/10.1094/PDIS-05-17-0630-RE

    Article  CAS  PubMed  Google Scholar 

  52. Kutcher H, Balesdent M, Rimmer S, Rouxel T, Chevre A, Delourme R, Brun H (2010) Frequency of avirulence genes in Leptosphaeria maculans in western Canada. Can J Plant Path 32(1):77–85

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the SaskCanola ASP-GF2 program, NSERC Discovery and NSERC-CRD. We are grateful to the farmers who provided the infected stubble for analysis. We are appreciative of technical work done by Yaping Wang, and the lab’s summer students who helped in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Dilantha Fernando.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This study does not contain any studies involving animals performed by any of the authors. No human research studies were conducted in this research.

Informed consent

All authors to this paper have given informed consent for their names to be included as authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zou, Z., Huang, S. et al. Development of a specific marker for detection of a functional AvrLm9 allele and validating the interaction between AvrLm7 and AvrLm9 in Leptosphaeria maculans. Mol Biol Rep 47, 7115–7123 (2020). https://doi.org/10.1007/s11033-020-05779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05779-8

Keywords

Navigation