Skip to main content
Log in

Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Atmospheric CO2 and CH4 have been continuously measured since 2009 at Longfengshan WMO/GAW station (LFS) in China. Variations of the mole fractions, influence of long-distance transport, effects of local sources/sinks and the characteristics of synoptic scale variations have been studied based on the records from 2009 to 2013. Both the CO2 and CH4 mole fractions display increasing trends in the last five years, with growth rates of 3.1±0.02 ppm yr‒1 for CO2 and 8±0.04 ppb yr‒1 (standard error, 1-σ) for CH4. In summer, the regional CO2 mole fractions are apparently lower than the Marine Boundary Layer reference, with the lowest value of‒13.6±0.7 ppm in July, while the CH4 values are higher than the MBL reference, with the maximum of 139±6 ppb. From 9 to 17 (Local time, LT) in summer, the atmospheric CO2 mole fractions at 10 m a.g.l. are always lower than at 80 m, with a mean difference of‒1.1±0.2 ppm, indicating that the flask sampling approach deployed may underestimate the background mole fractions in summer. In winter, anthropogenic emissions dominate the regional CO2 and CH4 mole fractions. Cluster analysis of backward trajectories shows that atmospheric CO2 and CH4 at LFS are influenced by anthropogenic emissions from the southwest (Changchun and Jilin city) all year. The synoptic scale variations indicate that the northeastern China plain acts as an important source of atmospheric CO2 and CH4 in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AGGI. 2014. The NOAA annual greenhouse gas index (AGGI). NOAA Earth System Research Laboratory, Boulder, Colorado, USA. http://esrl.noaa.gov/gmd/aggi/aggi.html

  • Andreae M O, Artaxo P, Beck V, Bela M, Freitas S, Gerbig C, Longo K, Munger J W, Wiedemann K T, Wofsy S C. 2012. Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons. Atmos Chem Phys, 12: 6041–6065

    Article  Google Scholar 

  • Artuso F, Chamard P, Piacentino S, Sferlazzo D M, De Silvestri L, di Sarra A, Meloni D, Monteleone F. 2009. Influence of transport and trends in atmospheric CO2 at Lampedusa. Atmos Environ, 43: 3044–3051

    Article  Google Scholar 

  • Ballantyne A P, Alden C B, Miller J B, Tans P P, White J W C. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488: 70–72

    Article  Google Scholar 

  • Bousquet P, Ringeval B, Pison I, Dlugokencky E J, Brunke E G, Carouge C, Chevallier F, Fortems-Cheiney A, Frankenberg C, Hauglustaine D A, Krummel P B, Langenfelds R L, Ramonet M, Schmidt M, Steele L P, Szopa S, Yver C, Viovy N, Ciais P. 2011. Source attribution of the changes in atmospheric methane for 2006–2008. Atmos Chem Phys, 11: 3689–3700

    Article  Google Scholar 

  • Cai Z C, Tsuruta H, Minami K. 2000. Methane emission from rice fields in China: Measurements and influencing factors. J Geophys Res, 105: 17231–17242

    Article  Google Scholar 

  • Cao G L, Zhang X Y, Wang Y Q, Zheng F C. 2008. Estimation of emissions from field burning of crop straw in China. Chin Sci Bull, 53: 784–790

    Article  Google Scholar 

  • Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C W, Crosson E R, Van Pelt A D, Steinbach J, Kolle O, Beck V, Daube B C, Gottlieb E W, Chow V Y, Santoni G W, Wofsy S C. 2010. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ringdown spectroscopy (CRDS) technique. Atmos Meas Tech, 3: 375–386

    Article  Google Scholar 

  • Chevallier F, Deutscher N M, Conway T J, Ciais P, Ciattaglia L, Dohe S, Fröhlich M, Gomez-Pelaez A J, Griffith D, Hase F, Haszpra L, Krummel P, Kyrö E, Labuschagne C, Langenfelds R, Machida T, Maignan F, Matsueda H, Morino I, Notholt J, Ramonet M, Sawa Y, Schmidt M, Sherlock V, Steele P, Strong K, Sussmann R, Wennberg P, Wofsy S, Worthy D, Wunch D, Zimnoch M. 2011. Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column. Geophys Res Lett, 38: L24810

    Article  Google Scholar 

  • Conway T J, Masarie K A, Lang P M, Tans P P. 2012. NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, Path: ftp://ftp.cmdl.noaa.gov/ccg/CO2/flask/ (last access: 13 Ma. 2013)

    Google Scholar 

  • Crevoisier C, Nobileau D, Armante R, Crépeau L, Machida T, Sawa Y, Matsueda H, Schuck T, Thonat T, Pernin J, Scott N A, Chédin A. 2013. The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI. Atmos Chem Phys, 13: 4279–4289

    Article  Google Scholar 

  • Crosson E R. 2008. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl Phys B, 92: 403–408

    Article  Google Scholar 

  • Dlugokencky E J, Steele L P, Lang P M, Masarie K A. 1994. The growth rate and distribution of atmospheric methane. J Geophys Res, 99: 17021–17043

    Article  Google Scholar 

  • Dlugokencky E J, Nisbet E G, Fisher R, Lowry D. 2011. Global atmospheric methane: Budget, changes and dangers. Philos Trans R Soc A-Math Phys Eng Sci, 369: 2058–2072

    Article  Google Scholar 

  • Dlugokencky E D, Tans P. 2015. Recent Global CO2. www.esrl.noaa.gov/gmd/ccgg/trends/

    Google Scholar 

  • Draxler R R, Rolph G D. 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html

    Google Scholar 

  • Fang S X, Luan T, Zhang G, Wu Y L, Yu D J. 2015. The determination of regional CO2 mole fractions at the Longfengshan WMO/GAW station: A comparison of four data filtering approaches. Atmos Environ, 116: 36–43

    Article  Google Scholar 

  • Fang S X, Zhou L X, Masarie K A, Xu L, Rella C W. 2013. Study of atmospheric CH4 mole fractions at three WMO/GAW stations in China. J Geophys Res-Atmos, 118: 4874–4886

    Article  Google Scholar 

  • Fang S X, Zhou L X, Tans P P, Ciais P, Steinbacher M, Xu L, Luan T. 2014. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos Chem Phys, 14: 2541–2554

    Article  Google Scholar 

  • Gerbig C, Lin J C, Munger J W, Wofsy S C. 2006. What can tracer observations in the continental boundary layer tell us about surface-atmosphere fluxes? Atmos Chem Phys, 6: 539–554

    Article  Google Scholar 

  • Houghton R A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B, 55: 378–390

    Google Scholar 

  • Houweling S, Dentener F, Lelieveld J, Walter B, Dlugokencky E. 2000. The modeling of tropospheric methane: How well can point measurements be reproduced by a global model? J Geophys Res, 105: 8981–9002

    Article  Google Scholar 

  • IPCC–Intergovernmental Panel on Climate Change: Climate Change. 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press

  • Keeling C D, Bacastow R B, Bainbridge A E, Ekdahl Jr. C A, Guenther P R, Waterman L S, Chin J F S. 1976. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus, 28: 538–551

    Google Scholar 

  • Li L J, Wang Y, Zhang Q, Li J X, Yang X G, Jin J. 2008. Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D-Earth Sci, 51: 403–414

    Article  Google Scholar 

  • Liang W, Shi Y, Zhang H, Yue J, Huang G H. 2007. Greenhouse gas emissions from northeast China rice fields in fallow season. Pedosphere, 17: 630–638

    Article  Google Scholar 

  • Liu L X, Zhou L X, Vaughn B, Miller J B, Brand W A, Rothe M, Xia L J. 2014. Background variations of atmospheric CO2 and carbon-stable isotopes at Waliguan and Shangdianzi stations in China. J Geophys Res-Atmos, 119: 5602–5612

    Article  Google Scholar 

  • Ma J. 2013. China Statistical Yearbook-2013: Section 13-3: Area of Cultivated Land at Year-End by Region (in Chinese). Beijing: China Statistics Press

    Google Scholar 

  • Novelli P C, Masarie K A, Lang P M, Hall B D, Myers R C, Elkins J W. 2003. Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires. J Geophys Res, 108: 4464

    Article  Google Scholar 

  • Patra P K, Law R M, Peters W, Rödenbeck C, Takigawa M, Aulagnier C, Baker I, Bergmann D J, Bousquet P, Brandt J, Bruhwiler L, Cameron-Smith P J, Christensen J H, Delage F, Denning A S, Fan S, Geels C, Houweling S, Imasu R, Karstens U, Kawa S R, Kleist J, Krol M C, Lin S J, Lokupitiya R, Maki T, Maksyutov S, Niwa Y, Onishi R, Parazoo N, Pieterse G, Rivier L, Satoh M, Serrar S, Taguchi S, Vautard R, Vermeulen A T, Zhu Z. 2008. TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002–2003. Glob Biogeochem Cycle, 22: GB4013

    Article  Google Scholar 

  • Peters G P, Marland G, Le Quéré C, Boden T, Canadell J G, Raupach M R. 2011. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change, 2: 2–4

    Article  Google Scholar 

  • Rousseau D D, Duzer D, Etienne J L, Cambon G, Jolly D, Ferrier J, Schevin P. 2004. Pollen record of rapidly changing air trajectories to the North Pole. J Geophys Res, 109: D06116

    Article  Google Scholar 

  • Tans P P, Fung I Y, Takahashi T. 1990. Observational contrains on the global atmospheric CO2 budget. Science, 247: 1431–1438

    Article  Google Scholar 

  • Thompson R L, Manning A C, Gloor E, Schultz U, Seifert T, Hänsel F, Jordan A, Heimann M. 2009. In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany. Atmos Meas Tech, 2: 573–591

    Article  Google Scholar 

  • Tohjima Y, Kubo M, Minejima C, Mukai H, Tanimoto H, Ganshin A, Maksyutov S, Katsumata K, Machida T, Kita K. 2014. Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmos Chem Phys, 14: 1663–1677

    Article  Google Scholar 

  • Tohjima Y, Mukai H, Hashimoto S, Patra P K. 2010. Increasing synoptic scale variability in atmospheric CO2 at Hateruma Island associated with increasing East-Asian emissions. Atmos Chem Phys, 10: 453–462

    Article  Google Scholar 

  • Thoning K W, Tans P P, Komhyr W D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. J Geophys Res, 94: 8549–8565

    Article  Google Scholar 

  • Wang Y, Munger J W, Xu S, McElroy M B, Hao J, Nielsen C P, Ma H. 2010. CO2 and its correlation with CO at a rural site near Beijing: Implications for combustion efficiency in China. Atmos Chem Phys, 10: 8881–8897

    Article  Google Scholar 

  • Warwick N J, Bekki S, Law K S, Nisbet E G, Pyle J A. 2002. The impact of meteorology on the interannual growth rate of atmospheric methane. Geophys Res Lett, 29: 8–1–8–4

    Article  Google Scholar 

  • WMO greenhouse gas Bulletin. 2014. The state of greenhouse gases in the atmosphere based on global observations throug. 2013}. Geneva: World Meteorological Organizatio

  • WMO data summary. 2014. WMO World Data Centre for Greenhouse Gases (WDCGG) Data Summary: Greenhouse Gases and Other Atmospheric Gases, No. 38, Japan Meteorological Agency, http://ds.data.jma.go.jp/gmd/wdcgg/pub/products/summary/ sum38/sum38.pdf

  • Worthy D E J, Chan E, Ishizawa M, Chan D, Poss C, Dlugokencky E J, Maksyutov S, Levin I. 2009. Decreasing anthropogenic methane emissions in Europe and Siberia inferred from continuous carbon dioxide and methane observations at Alert, Canada. J Geophys Res, 114: D10301

    Article  Google Scholar 

  • Yue J, Shi Y, Liang W, Wu J, Wang C, Huang G. 2005. Methane and Nitrous Oxide emissions from rice field and related microorganism in black soil, Northeastern China. Nutr Cycl Agroecosyst, 73: 293–301

    Article  Google Scholar 

  • Zhang J B, Song C C, Yang W Y. 2005. Cold season CH4, CO2 and N2O fluxes from freshwater marshes in northeast China. Chemosphere, 59: 1703–1705

    Article  Google Scholar 

Download references

Acknowledgements

We express our great thanks to the staff at Longfengshan station, who contributed to the system installation and maintenance. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41405129 & 41375130) and the National Key Research and Development of China (Grant No. 2017YFC0209701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuangXi Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Tans, P.P., Yao, B. et al. Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and transport. Sci. China Earth Sci. 60, 1886–1895 (2017). https://doi.org/10.1007/s11430-016-9066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9066-3

Keywords

Navigation