Skip to main content
Log in

Central Asian aridification during the late Eocene to early Miocene inferred from preliminary study of shallow marine-eolian sedimentary rocks from northeastern Tajik Basin

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia (ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess (L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amidon W H, Hynek S A. 2010. Exhumational history of the north central Pamir. Tectonics, 29: TC5017

    Article  Google Scholar 

  • An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature, 411: 62–66

    Article  Google Scholar 

  • An Z S, Sun Y B, Chang H, Zhang P Z, Liu X D, Cai Y J, Jin Z D, Qiang X K, Zhou W J, Li L, Shi Z G, Tan L C, Li X Q, Zhang X B, Jin Z. 2014. Late Cenozoic Climate Change in Monsoon-Arid Asia and Global Changes. In: An Z S, ed. Late Cenozoic Climate Change in Asia. Netherlands: Springer. 491–581

    Chapter  Google Scholar 

  • Bershaw J, Garzione, C N, Schoenbohm L, Gehrels G, Tao L. 2012. Cenozoic evolution of the Pamir Plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China). J Asian Earth Sci, 44: 136–148

    Article  Google Scholar 

  • Bosboom R, Dupont-Nivet G, Houben A J P, Brinkhuis H, Villa G, Mandic O, Stoica M, Zachariasse W J, Guo Z J, Li C X. 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Paleogeogr Paleoclimatol Paleoecol, 299: 385–398

    Article  Google Scholar 

  • Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Kouwenhoven T, Huang W T, Yang W, Guo Z J. 2014a. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China). Paleogeogr Paleoclimatol Paleoecol, 403: 101–118

    Article  Google Scholar 

  • Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Huang W, Yang W, Guo Z J, Krijgsman W. 2014b. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res, 26: 621–640

    Article  Google Scholar 

  • Burtman V S. 2000. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene. Tectonophysics, 319: 69–92

    Article  Google Scholar 

  • Carrapa B, DeCelles P G, Wang X, Clementz M T, Mancin N, Stoica M, Kraatz B, Meng J, Abdulov S, Chen F H. 2015. Tectono-climatic implications of Eocene Paratethys regression in the Tajik Basin of central Asia. Earth Planet Sci Lett, 424: 168–178

    Article  Google Scholar 

  • Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, John B, Birks H. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351–364

    Article  Google Scholar 

  • Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. 2010. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 29: 1055–1068

    Article  Google Scholar 

  • Coutand I, Strecker M R, Arrowsmith J R, Hilley G, Thiede R C, Korjenkov A, Omuraliev M. 2002. Late Cenozoic tectonic development of the intramontane Alai valley (Pamir-Tien Shan region, central Asia): An example of intracontinental deformation due to the Indo-Eurasia collision. Tectonics, 21: TC1053

    Article  Google Scholar 

  • DeCelles P G, Quade J, Kapp P, Fan M J, Dettman D L, Ding L. 2007. High and dry in central Tibet during the Late Oligocene. Earth Planet Sci Lett, 253: 389–401

    Article  Google Scholar 

  • Dercourt J, Ricou L E, Vrielynck B. 1993. Atlas Tethys, Paleoenvironmental Maps: Explanatory Notes. Paris: Gauthier-Villars. 307

    Google Scholar 

  • Ding Z L, Liu T S, Rutter N W, Yu Z W, Guo Z T, Zhu R X. 1995. Ice-volume forcing of east Asian winter monsoon variations in the past 80000 years. Quat Res, 44: 149–159

    Article  Google Scholar 

  • Ding Z L, Xiong S F, Sun J M, Yang S L, Gu Z Y, Liu T S. 1999. Pedostratigraphy and paleomagnetism of a 7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoonevolution. Paleogeogr Paleoclimatol Paleoecol, 152: 49–66

    Article  Google Scholar 

  • Ding Z L, Ranov V, Yang S L, Finaev A, Han J M, Wang G A. 2002. The loess record in southern Tajikistan and correlation with Chinese Loess. Earth Planet Sci Lett, 200: 387–400

    Article  Google Scholar 

  • Dodonov A E. 1991. Loess of central Asia. GeoJournal, 24: 185–194

    Article  Google Scholar 

  • Dodonov A E, Baiguzina L. 1995. Loess stratigraphy of central Asia: Palaeoclimatic and palaeoenvironmental aspects. Quat Sci Rev, 14: 707–720

    Article  Google Scholar 

  • Dzhalilov M, Alekseev M, Andreev Y N, Salibaev G. 1982. Mesozoic and Cenozoic deposits of the northern part of the Afghano-Tajik Basin. Miner Resour Dev Ser, 3: 131–137

    Google Scholar 

  • Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X M, 2007. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445: 635–638

    Article  Google Scholar 

  • Fang X M, Lv L Q, YangS L, Li J J, An Z S, Jiang P A, Chen X L. 2002. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China. Sci China Ser D-Earth Sci, 45: 289–299

    Article  Google Scholar 

  • Forster T, Heller F. 1994. Loess deposits from the Tajik depression (Central Asia): Magnetic properties and paleoclimate. Earth Planet Sci Lett, 128: 501–512

    Article  Google Scholar 

  • Frechen M, DodonovA E. 1998. Loess chronology of the Middle and Upper Pleistocene in Tadjikistan. Geol Rundsch, 87: 2–20

    Article  Google Scholar 

  • Ge J Y, Guo Z T, Zhan T, Yao Z Q, Deng C L, Oldfield F. 2012. Magnetostratigraphy of the Xihe loess-soil sequence and implication for late Neogene deformation of the West Qinling Mountains. Geophys J Int, 189: 1399–1408

    Article  Google Scholar 

  • Gerakis A, Baer B. 1999. A computer program for soil textural classification. Soil Sci Soc Am J, 63: 807–808

    Article  Google Scholar 

  • Gradstein F M, Ogg J G, Smith A G. 2004. A Geologic Time Scale 2004. Cambridge: Cambridge University Press. 589

    Book  Google Scholar 

  • Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163

    Article  Google Scholar 

  • Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. 2008. A major reorganization of Asian climate by the early Miocene. Clim Past, 4: 153–174

    Article  Google Scholar 

  • Hamburger M W, Sarewitz D R, Pavlis T L, Popandopulo G A. 1992. Structural and seismic evidence for intracontinental subduction in the peter the first range, central Asia. Geol Soc Am Bull, 104: 397–408

    Article  Google Scholar 

  • Han W X. 2008. Climatic records of Cenozoic sediments from Qaidam Basin and their implications on drying of Asian Inland (in Chinese). Doctor Dissertation. Lanzhou: Lanzhou University

    Google Scholar 

  • Hao Q Z, Guo Z T, 2007. Magnetostratigraphy of an early-middle Miocene loess-soil sequence in the western Loess Plateau of China. Geophys Res Lett, 34: L18305

    Article  Google Scholar 

  • Heermance R V, Chen J, Burbank D W, Wang C. 2007. Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Res, 19: 599–632

    Article  Google Scholar 

  • Heller F, Liu T S. 1982. Magnetostratigraphical dating of loess deposits in China. Nature, 300: 431–433

    Article  Google Scholar 

  • Huang W, Chen J H, Zhang X J, Feng S, Chen F H. 2015. Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci China Earth Sci, 58: 676–684

    Article  Google Scholar 

  • Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc, 62: 699–718

    Article  Google Scholar 

  • Kraatz B P, Geisler J H. 2010. Eocene-Oligocene transition in Central Asia and its effects on mammalian evolution. Geology, 38: 111–114

    Article  Google Scholar 

  • Kutzbach J E, Prell W L, Ruddiman W F. 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol, 101: 177–190

    Article  Google Scholar 

  • Li S J, Zhang R, Wang Q C. 2006. Implications of the color of sediments and clay minerals for Tertiary climatic changes of Kuqa depression (in Chinese). Acta Sedimentol Sin, 24: 521–530

    Google Scholar 

  • Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lecuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z J, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501–506

    Article  Google Scholar 

  • Liu J F, Guo Z T, Hao Q Z, Peng S Z, Qiao Y S, Sun B, Ge J Y. 2005. Magnetostratigraphy of the Miziwan Miocene eolian deposits in Qin’an County, Gansu Province (in Chinese). Quat Sci, 4: 503–509

    Google Scholar 

  • Liu T S. 1985. Loess and the Environment (in Chinese). Beijing: China Ocean Press. 497

    Google Scholar 

  • Liu W G, Liu Z H, An Z S, Sun J M, Chang H, Wang N, Dong J B, Wang H Y. 2014. Late Miocene episodic lakes in the arid Tarim Basin, western China. Proc Natl Acad Sci USA, 111: 16292–16296

    Article  Google Scholar 

  • Lu H Y, An Z S. 1997. Experimental study on the influence of different pretreatment procedures on the particle-size measurement of loess sediments. Chin Sci Bull, 42: 2535–2538

    Google Scholar 

  • Lu H Y, Wang X Y, Li L. 2010. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. J Geol Soc London, 342: 29–44

    Article  Google Scholar 

  • Manabe S, Broccoli A J. 1990. Mountains and arid climates of middle latitudes. Science, 247: 192–195

    Article  Google Scholar 

  • Meng J, McKenna M C. 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394: 364–367

    Article  Google Scholar 

  • Miao Y F, Herrmann M, Wu F L, Yan X L, Yang S L. 2012. What controlled mid-late Miocene long-term aridification in central Asia? Global cooling or Tibetan plateau uplift: A review. Earth-Sci Rev, 112: 155–172

    Article  Google Scholar 

  • Miller K G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S, Christie-Blick N, Pekar S F. 2005. The Phanerozoic record of global sea-level change. Science, 310: 1293–1298

    Article  Google Scholar 

  • Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Ann Rev Earth Planet Sci, 38: 77–102

    Article  Google Scholar 

  • Pan B T, Hu Z B, Wang J, Vandenberghe J, Hu X F, WenY H, Li Q, Cao B. 2012. The approximate age of the planation surface and the incision of the Yellow River. Paleogeogr Paleoclimatol Paleoecol, 356-357. 54–61

    Article  Google Scholar 

  • Popov S V, Rögl F, Rozanov A Y, Steininger F F, Shcherba I G, Kovac M. 2004. Lithological-Paleogeographic maps of Parathys 10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg. 1–46

    Google Scholar 

  • Prell W L, Kutzbach J E. 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360: 647–652

    Article  Google Scholar 

  • Pye K. 1987. Aeolian Dust and Dust Deposits. London: Academic Press. 334

    Google Scholar 

  • Pye K. 1995. The nature, origin and accumulation of loess. Quat Sci Rev, 14: 653–667

    Article  Google Scholar 

  • Qiang X K, An Z S, Song Y G, Chang H, Sun Y B, Liu W G, Ao H, Dong J B, Fu C F, Wu F, Lu F Y, Cai Y J, Zhou W J, Cao J J, Xu X W, Ai L. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54: 136–144

    Article  Google Scholar 

  • Ramstein G, Fluteau F, Besse J, Joussaume S. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788–795

    Article  Google Scholar 

  • Rea D K, Leinen M, Janecek T R. 1985. Geologic approach to the long-term history of atmospheric circulation. Science, 227: 721–725

    Article  Google Scholar 

  • Reading H. 1996. Sedimentary Environments: Processes, Facies, and Stratigraphy. Oxford: Wiley-Blackwell. 704

    Google Scholar 

  • Robinson A C, Yin A, Manning C E, Harrison T M, Zhang S H, Wang X F. 2004. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongurshan extensional system, western China. Geol Soc Am Bull, 116: 953–973

    Article  Google Scholar 

  • Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision. J Geophys Res, 102: 5043–5063

    Article  Google Scholar 

  • Song Y G, Fang X M, Masayuki T, Naoto I, Li J J, An Z S. 2001. Magnetostratigraphy of late Tertiary sediments from the Chinese Loess Plateau and its paleoclimatic significance. Chin Sci Bull, 46(Suppl). 16–22

    Article  Google Scholar 

  • Sun D H, Shaw J, An Z S, Cheng M Y, Yue L P. 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophys Res Lett, 25: 85–88

    Article  Google Scholar 

  • Sun D H, Bloemendal J, Rea D K, Vandenberghe J, Jiang F C, An Z S, Su R X. 2002. Grain-size distribution function of polymodal sediments in hydraulic and a eolian environments, and numerical partitioning of the sedimentary components. Sediment Geol, 152: 263–277

    Article  Google Scholar 

  • Sun D H, Bloemendal J, Rea D K, An Z S, Vandenberghe J, Lu H Y, Su R X, Liu T S. 2004. Bimodal grain-size distribution of Chinese Loess, and its palaeoclimatic implications. Catena, 55: 325–340

    Article  Google Scholar 

  • Sun D H, Bloemendal J, Yi Z Y, Zhu Y H, Wang X, Zhang Y B, Li Z J, Wang F, Han F, Zhang Y. 2011a. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan desert: Implications for the desertification of the Tarim Basin. Paleogeogr Paleoclimatol Paleoecol, 300: 1–10

    Article  Google Scholar 

  • Sun D H, Su R X, Li Z J, Lu H Y. 2011b. The ultrafine component in Chinese loess and its variation over the past 7.6 Ma: Implications for the history of pedogenesis. Sedimentology, 58: 916–935

    Article  Google Scholar 

  • Sun D H, Wang X, Li B F, Chen F H, Wang F, Li Z J, Liang B Q, Ma Z W. 2013. Evolution of Cenozoic Tethys and its environmental effects on inland drought (in Chinese). Mar Geol Quat Geol, 33: 135–151

    Article  Google Scholar 

  • Sun J M, Liu T S. 2006. The age of the Taklimakan Desert. Science, 312: 1621

    Article  Google Scholar 

  • Sun J M, Ye J, Wu W Y, Ni X J, Bi S D, Zhang Z Q, Liu W M, Meng J. 2010. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology, 38: 515–518

    Article  Google Scholar 

  • Sun J M, Jiang M S. 2013. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 588: 27–38

    Article  Google Scholar 

  • Sun X J, Wang P X. 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Paleogeogr Paleoclimatol Paleoecol, 222: 181–222

    Article  Google Scholar 

  • Tang T F. 1992. Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim, China. Beijing: Science Press. 138

    Google Scholar 

  • Vandenberghe J. 2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Sci Rev, 121: 18–30

    Article  Google Scholar 

  • Wang F, Sun D H, Chen F H, Bloemendal J, Guo F, Li Z J, Zhang Y B, Li B F, Wang X. 2015. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey. Paleogeogr Paleoclimatol Paleoecol, 426:139–158

    Article  Google Scholar 

  • Wang X, Sun D H, Wang F, Li B F, Wu S, Guo F, Li Z J, Zhang Y B, Chen F H. 2013. A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan desert, China. Clim Past, 9: 2731–2739

    Article  Google Scholar 

  • Wang X, Sun D H, Chen F H, Wang F, Li B F, Popov S V, Wu S, Zhang Y B, Li Z J. 2014. Cenozoic paleo-environmental evolution of the Pamir-Tienshan convergence zone. J Asian Earth Sci, 80: 84–100

    Article  Google Scholar 

  • Wang X, Wei H T, Taheri M, Khormali F, Danukalova G, Chen F H. 2016. Early Pleistocene climate in western arid central Asia inferred from loess-palaeosol sequences. Sci Rep, 6: 20560

    Article  Google Scholar 

  • Yang S L, Ding F, Ding Z L. 2006. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochim Cosmochim Acta, 70: 1695–1709

    Article  Google Scholar 

  • Yang W, Dupont-Nivet G, Jolivet M, Guo Z J, Bougeois L, Bosboom R, Zhang Z Y, Zhu B, Heilbronn G. 2015. Magnetostratigraphic record of the early evolution of the southwestern Tian Shan foreland basin (Ulugqat area), interactions with Pamir indentation and India-Asia collision. Tectonophysics, 644-645. 122–137

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693.

    Article  Google Scholar 

  • Zhang Y B, Sun D H, Li Z J, Wang F, Wang X, Li B F, Guo F, Wu S. 2014. Cenozoic record of a eolian sediment accumulation and aridification from Lanzhou, China, driven by Tibetan Plateau uplift and global climate. Glob Planet Change, 120: 1–15

    Article  Google Scholar 

  • Zhang Z S, Wang, H J, Guo Z T, Jiang D B. 2007. What triggers the transition of palaeoenvironmentalpatterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat. Paleogeogr Paleoclimatol Paleoecol, 245: 317–331

    Article  Google Scholar 

  • Zheng H B, Powell C M A, An Z S, Zhou J, Dong G R. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28: 715–718

    Article  Google Scholar 

  • Zheng H B, Wei X C, Tadad R, Clifte P D, Wang B, Jourdang F, Wang P, He M Y. 2015. Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 112: 7662–7667

    Article  Google Scholar 

  • Zijderveld J D A. 1967. AC demagnetization of rocks: Analysis of results. In: Collinson D W, Runcorn S K, Creer K M, eds. Methods in Paleomagnetism. New York: Elsevier. 254–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or FaHu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Kraatz, B., Meng, J. et al. Central Asian aridification during the late Eocene to early Miocene inferred from preliminary study of shallow marine-eolian sedimentary rocks from northeastern Tajik Basin. Sci. China Earth Sci. 59, 1242–1257 (2016). https://doi.org/10.1007/s11430-016-5282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5282-z

Keywords

Navigation