Skip to main content
Log in

Biostratigraphy constraining strontium isotopic stratigraphy and its application on the Lopingian (Late Permian)

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Lopingian is one of the fastest rising periods of seawater strontium isotopic ratios (87Sr/86Sr) in earth history, and its mechanisms and increasing rates of the 87Sr/86Sr evolution were still disputed widely. These disputations among researchers were caused mainly by timeframe selection (sections’ thickness or data of radiometric ages), and different stratigraphic boundaries and un-upmost dated ages. This paper examined published 87Sr/86Sr data of the Lopingian, and projected them on timescales based on evolutionary and age constrained conodonts fossils. 87Sr/86Sr evolution vs fossil constraining timescales was re-established in this period. This research suggests: (1) 87Sr/86Sr excursion projects on fossil zones can truly support 87Sr/86Sr evolutionary pattern in the period; (2) 87Sr/86Sr evolution provides a new approach for stratigraphic research of marine carbonate sections in lieu of biostratigraphic data; (3) 87Sr/86Sr stratigraphy works on marine carbonate sections of different sedimentation rates even between different basins; (4) the 87Sr/86Sr data and its shift was dependent on samples materials and chemical treatment methods; (5) the increasing rate of marine water 87Sr/86Sr in the Late Permian is suggested as 5.4×10−5/Ma or slightly lower; (6) sedimentation age and its 87Sr/86Sr of the Lopingian marine carbonate suggested as: D PRO=259-(R S−0.70695)/5.4×10−5±1 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azmy K, Poty E, Brand U. 2009. High-resolution isotope stratigraphy of the Devonian-Carboniferous boundary in the Namur-Dinant Basin, Belgium. Sediment Geol, 216: 117–124

    Article  Google Scholar 

  • Bailey T R, McArthur J M, Prince H, et al. 2000. Dissolution methods for strontium isotope stratigraphy: Whole rock analysis. Chem Geol, 167: 313–319

    Article  Google Scholar 

  • Burke W H, Denison R E, Hetherington E A, et al. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10: 516–519

    Article  Google Scholar 

  • Cao C Q, Love G D, Lindsay E H, et al. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 281: 188–201

    Article  Google Scholar 

  • Chen Z Q, Tong J N, Kaiho K, et al. 2007. Onset of biotic and environmental recovery from the end-Permian mass extinction within 1–2 million years: A case study of the Lower Triassic of the Lower Triassic of the Meishan section, South China. Paleogeogr Paleoclimatol Paleoecol, 252: 176–187

    Article  Google Scholar 

  • Du Y S, Tong J N. 1998. Introduction to Palaeontology and Historical Geology (in Chinese). Wuhan: China University of Geosciences Press. 1–212

    Google Scholar 

  • Erwin D H. 1994. The Permo-Triassic extinction. Nature, 367: 231–236

    Article  Google Scholar 

  • Erwin D H. 2008. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. New Jersey: Princeton University Press. 1–320

    Google Scholar 

  • Geldern R, Joachimski M M, Day J, et al. 2006. Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Paleogeogr Paleoclimatol Paleoecol, 240: 47–67

    Article  Google Scholar 

  • Heydari E, Wade W J, Hassanzadeh J. 2001. Diagenetic origin of carbon and oxygen isotope compositions of Permian-Triassic boundary strata. Sediment Geol, 191–197

    Google Scholar 

  • Heydari E, Hassanzadeh J, Wade W J, et al. 2003. Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction: Part 1-Sedimentology. Paleogeogr Paleoclimatol Paleoecol, 193: 405–423

    Article  Google Scholar 

  • Hu Z W, Huang S j, Liu L H, et al. 2010. Strontium isotopic composition near marine Permian/Triassic boundary of the Huaying Mountain, Eastern Sichuan (in Chinese). Acta Geosci Sin, 31: 853–859

    Google Scholar 

  • Huang C G, Huang S J, Wu S J, et al. 2006. Sr-isotope composition and evolvement in sea water over past 100 Ma and control factors (in Chinese). J Earth Sci Environ, 28: 19–24

    Google Scholar 

  • Huang S J, Shi H, Liu J, et al. 2001a. Progress in strontium isotope stratigraphy (in Chinese). Adv Earth Sci, 16: 194–200

    Google Scholar 

  • Huang S J, Shi H, Zhang M, et al. 2001b. Strontium isotope evolution and global sea-level changes of carboniferous and Permian marine carbonate, Upper Yangtze Platform (in Chinese). Acta Sedimentol Sin, 19: 481–487

    Google Scholar 

  • Huang S J, Shi H, Zhang M, et al. 2002. Application of strontium isotope stratigraphy to diagenesis research (in Chinese). Acta Sedimentol Sin, 20: 359–366

    Google Scholar 

  • Huang S J, Qing H R, Hu Z W, et al. 2008a. Cathodoluminescence and diagenesis of the carbonate rocks in feixianguan formation of Triassic, Eastern Sichuan Basin of Chian (in Chinese). Earth Sci-J China Univ Geosci, 33: 26–34

    Google Scholar 

  • Huang S J, Qing H R, Huang P P, et al. 2008b. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, Sci China Ser D-Earth Sci, 51: 528–539

    Article  Google Scholar 

  • Jan I U, Stephenson M H, Khan F R. 2009. Palynostratigraphic correlation of the Sardhai Formation (Permian) of Pakistan. Rev Palaeobot Palynology, 158: 72–82

    Article  Google Scholar 

  • Jin Y G, Wang Y, Wang W, et al. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432–436

    Article  Google Scholar 

  • Kamo S L, Czamanske G K, Amelin Y, et al. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett, 214: 75–91

    Article  Google Scholar 

  • Kashiwagi H, Ogawa Y, Shikazono N. 2008. Relationship between weathering, mountain uplift, and climate during the Cenozoic as deduced from the global carbon-strontium cycle model. Paleogeogr Paleoclimatol Paleoecol, 270: 139–149

    Article  Google Scholar 

  • Korte C, Kozur H W, Bruckschen P, et al. 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta, 67: 47–62

    Article  Google Scholar 

  • Korte C, Kozur H W, Joachimski M M, et al. 2004. Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigra phy across the Permian/Triassic boundary in Abadeh, Iran. Int J Earth Sci, 93: 565–581

    Google Scholar 

  • Korte C, Jasper T, Kozur H W, et al. 2006. 87Sr/86Sr record of Permian seawater. Paleogeogr Paleoclimatol Paleoecol, 240: 89–107

    Article  Google Scholar 

  • Korte C, Pande P, Kalia P, et al. 2010. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci, 37: 293–311

    Article  Google Scholar 

  • Kozur H W. 2003. Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to stage/substage subdivision and the numeric age of the Triassic stages. Albertiana, 28: 57–74

    Google Scholar 

  • Li D, Ling H F, Shields-Zhou G A, et al. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Res, 225: 128–147

    Article  Google Scholar 

  • Liu X C, Wang W, Shen S Z, et al. 2013. Late Guadalupian to Lopingian (Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran. Gondwana Res, 24: 222–232

    Article  Google Scholar 

  • Lu W C, Cui B Q, Yang S Q, et al. 1992. Strontium isotopic evolution of the Permian marine carbonates and implications (in Chinese). Mineral Petrol, 12: 80–87

    Google Scholar 

  • Martin E E, Macdougall J D. 1995. Sr and Nd isotopes at the Permian/Triassic boundary: A record of climate change. Chem Geol, 125: 73–99

    Article  Google Scholar 

  • McArthur J M, Kennedy W J, Gale A S, et al. 1992. Strontium-isotope stratigraphy in the Late Cretaceous, intercontinental correlation of the Campanian/Maastrichtian boundary. Terr Nova, 4: 385–393

    Article  Google Scholar 

  • McArthur J M, Howarth R J, Bailey T R. 2001. Strontium isotope stratigraphy LOWESS version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. J Geol, 109: 155–170

    Article  Google Scholar 

  • McArthur J M, Howarth R J, Shields G A. 2012. Strontium isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, et al. eds. The Geologic Time Scale 2012. Oxford: Elsevier Science Ltd. 127–144

    Chapter  Google Scholar 

  • Mei S L, Zhu Z L, Shi X Y, et al. 1999. Sequence stratigraphy of Permian Lopingian strata in central Guanxi (in Chinese). Geoscience, 13: 11–18

    Google Scholar 

  • Nan J Y, Liu Y Y. 2004. Organic and inorganic carbon-isotope shift and paleoenvironment at the P-T boundary section in Meishan, Zhejiang Province (in Chinese). Geochimica, 33: 9–19

    Google Scholar 

  • Nishioka S, Arakawa Y, Kobayashi Y. 1991. Strontium isotope profile of Carboniferous-Permian Akiyoshi limestone in southwest Japan. Geochem J, 25: 137–146

    Article  Google Scholar 

  • Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314: 526–528

    Article  Google Scholar 

  • Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth Planet Sci Lett, 92: 11–26

    Article  Google Scholar 

  • Raup D M, Sepkoski J J. 1982. Mass extinctions in the marine fossil record. Science, 215: 1501–1503

    Article  Google Scholar 

  • Reichow M K, Pringle M S, Al’Mukhamedov A I, et al. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province. Earth Planet Sci Lett, 277: 9–20

    Article  Google Scholar 

  • Shen S Z, Shi G R. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology, 28: 449–463

    Article  Google Scholar 

  • Shen S Z, Xie J F, Zhang H, et al. 2009. Roadian-Wordian (Guadalupian, Middle Permian) global palaeobiogeography of brachiopods. Glob Planet Change, 65: 166–181

    Article  Google Scholar 

  • Shen S Z, Henderson C M, Bowring S A, et al. 2010a. High-resolution Lopingian (Late Permian) timescale of South China. Geol J, 45: 122–134

    Article  Google Scholar 

  • Shen S Z, Mei S L. 2010b. Lopingian (Late Permian) high-resolution conodont biostratigraphy in Iran with comparison to South China zonation. Geol J, 45: 135–161

    Article  Google Scholar 

  • Shen S Z, Crowley J L, Wang Y, et al. 2011. Calibrating the end-Permian mass extinction. Science, 334: 1367–1372

    Article  Google Scholar 

  • Shi H, Huang S J, Shen L C, et al. 2002. Stratigraphical significance of the strontium isotopic curve of the upper Paleozoic of Sichuan and Guizhou (in Chinese). J Stratigr, 26: 106–110

    Google Scholar 

  • Sobolev S V, Sobolev A V, Kuzmin D V, et al. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477: 312–316

    Article  Google Scholar 

  • Tian J C, Zheng Y F. 1995. The revolution of the isotopic composition of strontium in the Permian paleo-ocean in South China (in Chinese). Acta Sedimentol Sin, 13: 125–130

    Google Scholar 

  • Toutin-Morin N, Freytet P, Cussey R. 1992. Continental Permian carbonates of western Europe and northern Africa. Carbonates Evaporites, 7: 88–93

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, et al. 1999. 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88

    Article  Google Scholar 

  • Wang W, Kano A, Okumura T, et al. 2007. Isotopic chemostratigraphy of the microbialite-bearing Permian-Triassic boundary section in the Zagros Mountains, Iran. Chem Geol, 244: 708–714

    Article  Google Scholar 

  • Wang W Q, Wang W, Feng X C, et al. 2014. Strontium isotope stratigraphy of marine carbonate sequences: examples on Lopingian of Permian (in Chinese). J Stratigr, 38: 430–444

    Google Scholar 

  • Wickman F E. 1948. Isotope ratios: a clue to the age of certain marine sediments. J Geol, 56: 61–66

    Article  Google Scholar 

  • Williamson T, Henderson R A, Price G D, et al. 2012. Strontium-isotope stratigraphy of the Lower Cretaceous of Australia. Cretac Res, 36: 24–36

    Article  Google Scholar 

  • Wooden J L, Czamanske G K, Fedorenko V A, et al. 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim Cosmochim Acta, 57: 3677–3704

    Article  Google Scholar 

  • Xiao J F, Li R X, Wang X L, et al. 2009. The characteristics of strontium isotopes composition about Permian-Triassic boundary in great bank of Guizhou (in Chinese). Geol Rev, 55: 647–652

    Google Scholar 

  • Zhao K D, Jiang S Y, Yang S Y, et al. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogensis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Res, 22: 310–324

    Article  Google Scholar 

  • Zhao L S, Tong J N, Sun Z M, et al. 2008. A detailed Lower Triassic conodont biostratigraphy and its implications for the GSSP candidate of the Induan-Olenekian boundary in Chaohu, Anhui Province. Prog Nat Sci, 18: 79–90

    Article  Google Scholar 

  • Ziegler A M, Hulver M L, Bowley D B. 1997. Permian world topography and climate. In: Martini I P, ed. Late Glacial and Postglacial Environmental Changes: Quaternary, Carboniferous-Permian, and Proterozoic. Oxford: Oxford University Press. 111–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Liu, X., Wang, W. et al. Biostratigraphy constraining strontium isotopic stratigraphy and its application on the Lopingian (Late Permian). Sci. China Earth Sci. 58, 1951–1959 (2015). https://doi.org/10.1007/s11430-015-5134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5134-2

Keywords

Navigation