Skip to main content
Log in

Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Elatsite porphyry copper deposit occurs in an island-arc setting hosted by Late Cretaceous monzonitic-monzodioritic porphyry stocks which were emplaced into Precambrian-Cambrian phyllites. Trace element data of the Late Cretaceous intrusive rocks suggest that they are I-type volcanic arc granitoids. Two main ore mineral assemblages are distinguished: (1) magnetite–bornite–chalcopyrite, and (2) chalcopyrite–pyrite. The first one is linked to potassic-propylitic, and the second to phyllic-argillic alteration. Minor ore minerals are hematite, molybdenite, sphalerite, pyrrhotite, marcasite, hessite, and solid solutions of linnaeite–siegenite–carrollite, tetrahedrite–tennantite, clausthalite–galena, gold–electrum and merenskyite–moncheite. Precious-metal contents are relatively high throughout the deposit but Au, Pd and Pt are concentrated more strongly in the magnetite–bornite–chalcopyrite assemblage. Average grades of Au, Ag, Pd and Pt calculated for the 0.33% Cu ore body are 0.96, 0.19, 0.007 and 0.002 g/t respectively. Analyses of flotation concentrates revealed 25.6% Cu, and Ag, Au, Pd and Pt contents of 33.0, 13.6, 0.72 and 0.15 g/t respectively. The copper mineralisation at Elatsite took place at pressures of 120 to 300 bar, corresponding to depths of formation of 1 to 3 km under hydrostatic conditions. The precious metals were probably transported jointly as chloride complexes in highly saline magmatic-hydrothermal solutions. The fluids had temperatures of 340 to >700 °C and salinities of 28 to 64% NaCl, and mixed with meteoric water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5. A
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11A–D.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16A, B.
Fig. 17.

Similar content being viewed by others

References

  • Ahmad SN, Rose AW (1980) Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Econ Geol 75:229–250

    CAS  Google Scholar 

  • Beane RE, Titley SR (1981) Porphyry copper deposits. Part II. Hydrothermal alteration and mineralisation. In: Skinner BJ (ed) Econ Geol 75th Anniversary vol, pp 235–269

  • Berza T, Constantinescu E,Vlad SN (1998) Upper Cretaceous magmatic series and associated mineralisation in the Carpatho-Balkan Orogen. Resources Geol 48:291–306

    CAS  Google Scholar 

  • Bischoff JL (1991) Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTX summary from 300° to 500 °C. Am J Sci 291:309–338

    CAS  Google Scholar 

  • Boccalletti M, Manetti P, Peceeerillo A (1974a) Hypothesis on the plate tectonic evolution of the Carpatho-Balkan arcs. Earth Planet Sci Lett 23:193–198

    Article  Google Scholar 

  • Boccaletti M, Manetti P, Pecerillo A (1974b) The Balkanides as an instance of back-arc thrust belt: possible relation with the Hellenides. Geol Soc Am Bull 85:1077–1084

    Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684

    CAS  Google Scholar 

  • Bodnar RJ (1994) Synthetic fluid inclusions. XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution. Geochim Cosmochim Acta 58:1053–1063

    CAS  Google Scholar 

  • Bodnar RJ, Beane RE (1980) Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona. Econ Geol 75:876–893

    CAS  Google Scholar 

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B, Frezotti ML (eds) Fluid inclusions in minerals: methods and applications. Virginia Polytech Inst State Univ Blacksburg, VA, pp 117–131

    Google Scholar 

  • Bogdanov B (1974) Structural-metallogenic zones and genetic features of the ore deposits in Bulgaria. In: Bogdanov B, Zheliazkova-Panayotova M, Kikovski B, Dragov P (eds) Problems of ore deposition. Proc 4th IAGOD Symp, 19–25 September 1974, Varna. Bulgarian Academy of Science, Sofia, pp 217–225

  • Bonev IK, Kerestedjian T, Atanassova R, Andrew CJ (2002) Morphogenesis and composition of native gold in the Chelopech volcanic-hosted Au-Cu epithermal deposit, Srednogorie zone, Bulgaria. Miner Deposita 37:614–629

    CAS  Google Scholar 

  • Chapell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174

    Google Scholar 

  • Chivas AR, Wilkins RWT (1977) Fluid inclusions studies in relation to hydro-thermal alteration and mineralization at the Koloula porphyry copper prospect, Guadalcanal. Econ Geol 72:153–169

    Google Scholar 

  • Ciobanu CL, Cook NJ, Stein H (2002) Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt. Miner Deposit 37:541–567

    CAS  Google Scholar 

  • Cline JS, Bodnar RJ (1994) Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Econ Geol 89:1780–1802

    CAS  Google Scholar 

  • Cox DP (1985) Geology of the Tanama and Helecho porphyry copper deposits and vicinity, Puerto Rico. US Geol Surv Prof Pap 1327

  • Cunningham CG (1978) Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems. J Res US Geol Surv 6:745–754

    CAS  Google Scholar 

  • Dabovski C, Harkovska A, Kamenov B, Mavrudchiev B, Stanisheva-Vassileva G, Yanev Y (1991) A geodynamic model of the Alpine magmatism in Bulgaria. Geol Balcanica 21(4):3–15

    Google Scholar 

  • Damman AH, Kars SM, Touret JLR, Rieffe EC, Kramer JALM, Vis RD, Pineta I (1996) PIXE and SEM analyses of fluid inclusions in quartz crystals from the K-alteration zone of the Rosia Poieni porphyry-Cu deposit, Apuseni Mountains, Rumania. Eur J Mineral 8:1081–1096

    Google Scholar 

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O and NaCl-CaCl2-H2O. Geochim Cosmochim Acta 54:591–601

    CAS  Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6 km vertical reconstruction. Econ Geol 87:1963–2001

    CAS  Google Scholar 

  • Dragov P, Petrunov R (1996) Elatsite porphyry copper-precious metals (Au and PGE) deposit. In: Popov P (ed) Plate tectonic aspects of the Alpine metallogeny in the Carpatho-Balkan region. Proc Annu Meet UNESCO-IGCP Proj 356, Sofia. Bulgarian Academy of Science, Sofia, vol 1, pp 171–174

  • Eastoe CJ (1978) A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ Geol 73:721–748

    CAS  Google Scholar 

  • Eastoe CJ (1982) Physics and chemistry of the hydrothermal system at the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ Geol 77:127–153

    CAS  Google Scholar 

  • Economou-Eliopoulos M, Eliopoulos DG (2000) Palladium, platinum and gold concentration in porphyry copper systems of Greece and their genetic significance. Ore Geol Rev 16:59–70

    Article  Google Scholar 

  • Eliopoulos DG, Economou-Eliopoulos M (1991) Platinum-group element and gold contents in the Skouries porphyry copper deposit, Chalkidiki Peninsula, Northern Greece. Econ Geol 86:740–749

    CAS  Google Scholar 

  • Eliopoulos DG, Economou-Eliopoulos M, Strashimirov Str, Kovachev V, Zhelyskova-Panayotova M (1995) Gold, platinum and palladium content in Cu deposits from Bulgaria a study in progress. Geol Soc Greece Spec Publ 4:712–716

    Google Scholar 

  • Erwood RJ, Kesler SE, Cloke PL (1979) Compositionally distinct, saline hydro-thermal solutions, Naica Mine, Chihuahua, Mexico. Econ Geol 74:95–108

    CAS  Google Scholar 

  • Fanger L, Driesner T, Heinrich CA, Von Quadt A, Peycheva I (2001) Elatsite porphyry Cu deposit, Bulgaria: mineralisation, alteration and structures. In: Piestrzynski A et al. (eds) Mineral deposits at the beginning of the 21st century. Balkema, Lisse, pp 527–529

  • Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold in the porphyry epithermal environment. Econ Geol 92:45–59

    CAS  Google Scholar 

  • Hein UF, Tistl M (1987) Characteristics of fluid inclusions in the porphyry copper deposit at La Granja, Peru. Chem Geol 61:183–192

    CAS  Google Scholar 

  • Heinrich CA, Neubauer F (2002) Cu-Au-Pb-Zn-Ag metallogeny of the Alpine-Balkan-Carpathian-Dinaride geodynamic province. Miner Deposita 37:533–540

    CAS  Google Scholar 

  • Henley RW (1973) Solubility of gold in hydrothermal chloride solutions. Chem Geol 11:73–87

    CAS  Google Scholar 

  • Irvine TN, Baragar WAR (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    CAS  Google Scholar 

  • Kalaidziev S, Hadziiski K, Angelkov K (1984) Structural conditions for localization of the porphyry copper deposit Elacite (in Bulgarian). Rev Bulgarian Geol Soc 45(2):189–196

    Google Scholar 

  • Kamenov BK, Von Quadt A, Peycheva I (2002) New insight into petrology, geochemistry and dating of Vejen Pluton. In: Abstr Vol Goldschmidt Conf 2002, 18–23 August 2002, Davos, pp A380

  • Kwak TAP, Hing Tan T (1981) The importance of CaCl2 in fluid composition trends evidence from the King Island (Dolphin) skarn deposit. Econ Geol 76:955–960

    Google Scholar 

  • Meinert LD, Hefton KK, Mayes D, Tasiran I (1997) Geology, zonation and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ Geol 92:509–534

    CAS  Google Scholar 

  • Moritz R, Chambefort I, Chiaradia M, Fontignie D (2001) The Late Cretaceous high-sulfidation Au-Cu Chelopech deposit, Bulgaria: geological setting, paragenesis, fluid inclusion microthermometry of enargite, and isotpe study (Pb, Sr, S). In: Piestrzynski A et al. (eds) Mineral deposits at the beginning of the 21st century. Balkema, Lisse, pp 547–550

  • Mountain BW, Wood SA (1988) Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions: a thermo-dynamic approach. Econ Geol 83:492–510

    CAS  Google Scholar 

  • Mutschler FE, Griffin ME, Scott Stevens D, Shannon SS Jr (1985) Precious metal deposits related to alkaline rocks in the North American Cordillera—an interpretive review. Trans Geol Soc S Afr 88:355–377

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983

    CAS  Google Scholar 

  • Petrunov R (1995) Ore mineral paragenesis and zoning in the deposit of Chelopech (in Bulgarian). Geochim Mineral Petrol Sofia 30:89–98

    CAS  Google Scholar 

  • Petrunov R, Dragov P, Ignatov G, Neykov H, Lliev Ts, Vasileva N, Tsadsov V, Djunakov S, Doncheva K (1992) Hydrothermal PGE-mineralisation in the Elacite porphyry copper deposit (the Sredna Gora metallogenic zone, Bulgaria). C RAcad Bulgare Sci 45(4):37–40

    CAS  Google Scholar 

  • Piestrzynski A, Schmidt Sth, Franco H (1994) Pd-minerals in the Sto. Tomas II, porphyry copper deposit, Tuba Benguet, Philippines. Mineral Polonica 25(2):21–31

    Google Scholar 

  • Popov P (1981) Magmotectonic features of the Banat-Srednogorie Belt. Geol Balcanica 11(2):43–72

    CAS  Google Scholar 

  • Popov P (1987) Tectonics of the Banat-Srenogorie rift. Tectonophysics 143:209–216

    Google Scholar 

  • Popov P, Kovachev V (1996) Geology, composition and genesis of the ore mineralizations in the central and southern part of the Elatsite-Chelopech ore field. In: Popov P (ed) Plate tectonic aspects of the Alpine metallogeny in the Carpatho-Balkan region. Proc Annu Meet UNESCO-IGCP Proj 356, Sofia. Bulgarian Academy of Science, Sofia, vol 1, pp 159–170

  • Popov P, Popov K (1997) Metallogeny of Pangyurishte ore region. In: Romic K, Konzulovic R (eds) Proc Symp Ore Deposits Exploration, 2–4 April 1997, Belgrade, pp 327–338

  • Popov P, Popov K (2000) General geology and metallogenic features of the Panagyurishte ore region. In: Geodynamics and ore deposits evolution of the Alpine-Balkan-Carpathian-Dinaride province. Proc ABCD-GEODE Worksh, UMG St I Rilski, Sofia, pp 1–7

  • Popov P, Petrunov V, Kovachev S, Strashimirov M, Kanazirski M (2000) Elatsite-Chelopech ore field. In: Strashimirov S, Popov P (eds) Geology and metallogeny of the Panagyurishte ore region (Srednogorie zone, Bulgaria). ABCD-GEODE Worksh, May 2000, Borovets. UMG St I Rilski, Sofia, Guide Excursions A and C, pp 8–18

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogenous or stratified microvolumes applying the model "PAP". In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75

  • Reynolds TJ, Beane RE (1985) Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ Geol 80:1328–1347

    CAS  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Mineral 12

  • Roedder E, Bodnar RJ (1980) Geologic pressure determinations from fluid inclusion studies. Annu Rev Earth Planet Sci 8:263–301

    CAS  Google Scholar 

  • Sassani DC, Shock EL (1990) Speciation and solubility of palladium in aqueous magmatic-hydrothermal solutions. Geology 18:925–928

    Article  CAS  Google Scholar 

  • Seward TM (1976) The stability of chloride complexes of silver in hydrothermal solutions up to 350 °C. Geochim Cosmochim Acta 40:1329–1341

    CAS  Google Scholar 

  • Seward TM (1984) The transport and deposition of gold in hydrothermal systems. In: Foster RP (ed) Gold 82: the geology, geochemistry and genesis of gold deposits. Balkema, Rotterdam, pp 165–181

    Google Scholar 

  • Shelton KL (1983) Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: a fluid inclusion and stable isotope study of Mines Gaspé, Quebec. Econ Geol 78:387–421

    CAS  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow

  • Sillitoe RH (1979) Some thoughts on gold-rich porphyry copper deposits. Miner Deposita 14:161–174

    Google Scholar 

  • Sillitoe RH (1993) Gold-rich porphyry copper deposits: geological model and exploration implications. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposit modeling. Geol Assoc Can Spec Pap 40:465–478

    CAS  Google Scholar 

  • Sourirajan S, Kennedy GC (1962) The system H2O-NaCl at elevated temperatures and pressures. Am J Sci 260:115–141

    CAS  Google Scholar 

  • Spencer RJ, Moeller N, Weare JH (1990) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O-system at temperatures below 25 °C. Geochim Cosmochim Acta 54:575–590

    CAS  Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor saturated conditions. Geochim Cosmochim Acta 52:989–1005

    CAS  Google Scholar 

  • Strashimirov S, Petrunov R, Kanazirski M (2002) Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria. Miner Deposita 37:587–598

    CAS  Google Scholar 

  • Tarkian M, Koopmann G (1995) Platinum-group minerals in the Santo Tomas II (Philex) porphyry copper-gold deposit, Luzon Island, Philippines. Miner Deposita 30:39–47

    CAS  Google Scholar 

  • Tarkian M, Stribrny B (1999) Platinum-group elements in porphyry copper deposits: a reconnaissance study. Mineral Petrol 65:161–183

    CAS  Google Scholar 

  • Tarkian M, Eliopoulos DG, Economou-Eliopoulos M (1991) Mineralogy of precious metals in the Skouries porphyry copper deposit, Northern Greece. N Jb Mh 12:529–537

    Google Scholar 

  • Vanko DA, Bodnar RJ, Sterner SM (1988) Synthetic fluid inclusions. VIII. Vapor-saturated halite solubility in part of the system NaCl-CaCl2-H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim Cosmochim Acta 52:2451–2456

    CAS  Google Scholar 

  • Vassileff L, Stanisheva-Vassileva G (1982) The Srednogorie zone. General structural-geological, petrological and metallogenic features. In: Guideb IMA 13th General Meet, 10–25 September 1982, Varna. Bulgarian Academy of Science, Sofia, vol 1, pp 1–16

  • Von Quadt A, Ivanov Z, Peycheva I (2001) The central Srednogorie (Bulgaria) part of the Cu(Au-Mo) Belt of Europe: a review of the geochronological data and the geodynamical models in the light of the new structural and isotopic studies. In: Piestrzynski A et al. (eds) Mineral deposits at the beginning of the 21st century. Balkema, Lisse, pp 555–558

  • Von Quadt A, Peycheva I, Heinrich CA (2002) Life span of a Cu-(Au-PGE) porphyry deposit using high-precise U-Pb single zircon dating, example: Elatsite, Bulgaria. In. Abstr Vol Goldschmidt Conf 2002, 18–23 August 2002, Davos, pp A811

  • Wilson JC (1978) Ore fluid-magma relationships in a vesicular quartz latite porphyry dike at Bingham, Utah. Econ Geol 73:1287–1307

    CAS  Google Scholar 

  • Wilson JWJ, Kesler SE, Cloke PL, Kelley WC (1980) Fluid inclusion geochemistry of the Granisle and Bell porphyry copper deposits, British Columbia. Econ Geol 75:45–61

    CAS  Google Scholar 

  • Wood SA, Mountain BW, Pan P (1992) The aqueous geochemistry of platinum, palladium and gold: recent experimental constraints and a re-evaluation of theoretical predictions. Can Mineral 30:955–981

    CAS  Google Scholar 

  • Zagorcev I, Moorbath S (1987) Radium-strontium isotopic data for Vitosha Pluton, Srednegorie zone. Geol Balcanica 17(6):43–48

    Google Scholar 

  • Zhang Y, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64:335–350

    CAS  Google Scholar 

  • Zwart W (1995) Fluid inclusions in carbonate rocks and calcite cements. Diss Freie Universität Amsterdam

  • Zwart EW, Touret LR (1994) Melting behaviour and composition of aqueous fluid inclusions in fluorite and calcite: application within the system H2O-CaCl2-NaCl. Eur J Mineral 6:773–786

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Stribrny, Federal Institute for Geosciences and Natural Resources, Hannover, for providing XRF analyses and for helpful discussion. We thank E. Landjeva, University of Sofia, for AAS analyses and B. Cornelisen, Hamburg, for help with microprobe analyses. P. Spaethe, University of Wuerzburg, is thanked for preparing the doubly polished sections, as well as K.P. Kelber, University of Wuerzburg, for the black-and-white photographs of the fluid inclusions. C. Devey, University of Bremen, kindly improved the English. The constructive criticism of two reviewers has been invaluable. We are grateful to B. Lehmann for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmud Tarkian.

Additional information

Editorial handling: O. Thalhammer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarkian, M., Hünken, U., Tokmakchieva, M. et al. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Miner Deposita 38, 261–281 (2003). https://doi.org/10.1007/s00126-002-0336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-002-0336-x

Keywords

Navigation