Skip to main content
Log in

3D modelling of hydrothermal alteration associated with VHMS deposits in the Kristineberg area, Skellefte district, northern Sweden

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

This contribution presents a 3D assessment of metamorphosed and deformed, hydrothermally altered volcanic rocks, hosting the massive sulphide deposits of the Kristineberg area in the 1.9 Ga Skellefte mining district in northern Sweden, using six calculated alteration parameters: the Ishikawa alteration index, the chlorite–carbonate–pyrite index and calculated net mass changes in MgO, SiO2, Na2O and Ba. The results, which are also available as film clips in the Supplementary data, confirm inferences from geological mapping; namely that the sericite- and chlorite-rich alteration zones have complex and cross-cutting geometries and that most of these zones are semi-regional in extent and range continuously from surface to over a kilometre deep. The major known massive sulphide deposits occur proximal to zones characterised by coincidence of high values for the alteration index and chlorite–carbonate–pyrite index and large MgO gains, which corresponds to zones rich in magnesian silicates. These zones are interpreted as the original chlorite-rich, proximal parts the alteration systems, and form anomalies extending up to 400 m away from the sulphide lenses. In addition, the stratigraphically highest VHMS are hosted by rocks rich in tremolite, talc, chlorite and dolomite with lesser clinozoisite, which have high chlorite–carbonate–pyrite index and low–medium alteration index values, reflecting a greater importance of some chlorite-carbonate alteration at this stratigraphic level. Vectoring towards massive sulphide deposits in this area can be improved by combining the AI and CCPI indexes with calculated mass changes for key mobile elements. Of the ones modelled in this study, MgO and SiO2 appear to be the most useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RL, Weihed P, Svenson SA (1996) Setting of Zn–Cu–Au–Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden. Econ Geol 91(6):1022–1053

    Article  Google Scholar 

  • Årebäck H, Barrett TJ, Abrahamsson S, Fagerström P (2005) The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden, part I: geology. Mineral Deposita 40(4):351–367

    Article  Google Scholar 

  • Barrett TJ, MacLean WH, Årebäck H (2005) The Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern Sweden. Part II: chemostratigraphy and alteration. Mineral Deposita 40(4):368–395

    Article  Google Scholar 

  • Bauer TE, Skyttä P, Allen RL, Weihed P (2011) Syn-extensional faulting controlling structural inversion—insights from the Palaeoproterozoic Vargfors syncline, Skellefte mining district, Sweden. Precambrian Res 191:166–183

    Article  Google Scholar 

  • Bauer TE, Skyttä P, Hermansson T, Allen RL, Weihed P (2014) Correlation between distribution and shape of VMS deposits and regional deformation patterns, Skellefte district, northern Sweden. Miner Deposita: 1–19

  • Bergman Weihed J (2001) Palaeoproterozoic deformation zones in the Skellefte and the Arvidsjaur areas, northern Sweden. In: Weihed P (ed) Economic geology research 1. Sveriges Geologiska Undersökning C 833. pp 46–68

  • Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum JE, Evans TR (2001) Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH Computer Graphics Proceeding

  • Galley AG (1993) Characteristics of semi-conformable alteration zones associated with volcanogenic massive sulphide districts. J Geochem Explor 48(2):175–200

    Article  Google Scholar 

  • Galley AG, Bailes aH (1999) The interrelationship between the Vinterliden intrustion, synvolcanic alteration, and volcanogenic massive sulfide mineralization, Kristineberg Region, Skellefte District, Sweden (trans: Division E). Camiro

  • Galley AG, Hannington M, Jonasson I (2007) Volcanogenic massive sulphide deposits. Mineral deposits of Canada: a synthesis of major deposit-types, district Metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5:141–161

  • Goodfellow WD, McCutcheon SR, Peter JM (2003) Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and northern Maine; introduction and summary of findings. Econ Geol Monogr 11:1–16

    Google Scholar 

  • Hannington MD, Galley AG, Herzig PM, Petersen S, Humphris SE, Miller DJ, Alt JC, Becker K, Brown D, Bruegmann GE, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig RJ, Nakamura K-i, Reysenbach A-L, Rona PA, Smith SE, Sturz AA, Tivey MK, Zhao X (1998) Comparison of the TAG mound and stockwork complex with cyprus-type massive sulfide deposits. Proc Ocean Drill Program Sci Results 158:389–415. doi:10.2973/odp.proc.sr.158.217.1998

    Google Scholar 

  • Hannington MD, Kjarsgaard IM, Galley AG, Taylor B (2003) Mineral–chemical studies of metamorphosed hydrothermal alteration in the Kristineberg volcanogenic massive sulfide district, Sweden. Mineral Deposita 38(4):423–442

    Article  Google Scholar 

  • Ishikawa Y, Sawaguchi T, Iwaya S, Horiuchi M (1976) Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Min Geol 26:105–117

    Google Scholar 

  • Jansson N, Hermansson T, Fjellerad Persson M, Berglund A, Kruuna A, Skyttä P, Bachmann K, Gutzmer J, Chmielowski RM, Weihed P (2013) Recent advances in structural geology, lithogeochemistry and exploration for VHMS deposits, Kristineberg area, Skellefte District, Sweden. In: 12th SGA Biennial Meeting, Uppsala, Sweden, 12–15 August

  • Kathol B, Weihed P (2005) Description of regional geological and geophysical maps of the Skellefte District and surrounding areas. Geological Survey of Sweden

  • Kathol B, Weihed P, Antal Lundin I, Bark G, Bergman WJ, Bergström U, Billström K, Björk L, Claesson L, Daniels J, Eliasson T, Frumerie M, Kero L, Kumpulainen RA, Lundström H, Lundström I, Mellqvist C, Petersson J, Skiöld T, Sträng T, Stølen L-K, Söderman J, Triumf C-A, Wikström A, Wikström T, Årebäck H (2005) Regional geological and geophysical maps of the Skellefte district and surrounding areas. Sver Geol Unders Ba 57:1

    Google Scholar 

  • Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol Bull Soc Econ Geol 82(7):1898–1911. doi:10.2113/gsecongeo.82.7.1898

    Article  Google Scholar 

  • Large RR, Gemmell JB, Paulick H (2001a) The alternation box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ Geol 96(5):957–971

    Google Scholar 

  • Large RR, McPhie J, Gemmell JB, Herrmann W, Davidson GJ (2001b) The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: some examples from Australia. Econ Geol 96(5):913–938

    Google Scholar 

  • Li XC, Fan HR, Santosh M, Hu FF, Yang KF, Lan TG (2013) Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China. Ore Geol Rev 53:403–421

    Article  Google Scholar 

  • Lotfolah Hamedani M, Plimer IR, Xu C (2012) Orebody modelling for exploration: the Western mineralisation, Broken Hill, NSW. Nat Resour Res: 1–21

  • MacLean W, Barrett T (1993) Lithogeochemical techniques using immobile elements. J Geochem Explor 48:109–133

    Article  Google Scholar 

  • Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits; the Kuroko perspective. Ore Geol Rev 10(3-6):135–177. doi:10.1016/0169-1368(95)00021-6

    Article  Google Scholar 

  • Sangster DF (1972) Precambrian volcanogenic massive sulphide deposits in Canada; a review. Pap Geol Surv Can 72–22:44

    Google Scholar 

  • Schlatter DM (2007) Volcanic stratigraphy and hydrothermal alteration of the Petiknäs South Zn–Pb–Cu–Au–Ag volcanic-hosted massive sulfide deposit. Luleå University of Technology, Luleå

    Google Scholar 

  • Schlatter DM, Barrett T, Abrahamsson S (2003) Chemostratigraphy of metamorphosed and altered Paleoproterozoic volcanic rocks associated with massive sulfide deposits at Rävliden and Kristineberg West, Skellefte district, Sweden. In: Eliopoulos DG (ed) Mineral exploration and sustainable development: proceedings of the Seventh Biennial SGA Meeting, Athens, Greece, 24–28 August 2003. pp 1103–1106

  • Schlatter DM, Barrett T, Allen RL (2006) Mass changes in alteration zones of the Petiknäs South volcanic-hosted massive sulfide deposit, Skellefte district, Sweden. Paper presented at the 27th Nordic Geological Winter Meeting, January 9–12, 2006, Oulu, Finland

  • Skyttä P (2012) Crustal evolution of an ore district illustrated—4D-animation from the Skellefte district, Sweden. Comput Geosci 48:157–161. doi:10.1016/j.cageo.2012.05.029

    Article  Google Scholar 

  • Skyttä P, Hermansson T, Andersson J, Whitehouse M, Weihed P (2011) New zircon data supporting models of short-lived igneous activity at 1.89 Ga in the western Skellefte District, central Fennoscandian Shield. Solid Earth 2(2):205–217. doi:10.1016/j.precamres.2011.09.014

    Article  Google Scholar 

  • Skyttä P, Bauer TE, Tavakoli S, Hermansson T, Andersson J, Weihed P (2012) Pre-1.87 Ga development of crustal domains overprinted by 1.87 Ga transpression in the Palaeoproterozoic Skellefte district, Sweden. Precambrian Res 206–207:109–136. doi:10.1016/j.precamres.2012.02.022

    Article  Google Scholar 

  • Skyttä P, Bauer T, Hermansson T, Dehghannejad M, Juhlin C, Juanatey MG, Hübert J, Weihed P (2013) Crustal 3D-geometry of the Kristineberg area (Sweden) with implication on VMS deposits. Solid Earth 4:387–404. doi:10.5194/se-4-387-2013

    Article  Google Scholar 

  • Zuo R, Cheng Q, Xia Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102(1):37–43

    Article  Google Scholar 

Download references

Acknowledgements

The project was undertaken by Luleå University of Technology with the support of Boliden Mines. We would like to express our appreciation to Pär Weihed, and Rodney Allen, who were instrumental in getting this collaboration underway. We thank the many geologists at Boliden who have, over the years, collected the drill core samples and lithogeochemical analyses, which formed an essential part of this study. We also thank the personnel at the Boliden core facility for retrieving from storage many historic drill holes for the new lithogeochemical sampling. Tim Barrett and Thomas Monecke provided thoughtful and comprehensive reviews, which considerably improved the quality of this manuscript. Additional thanks are due to Tim Barrett for his willingness to send helpful replies to queries sent him during all stages of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riia M. Chmielowski.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

The results of the 3D alteration models are shown as video clips in these supplementary data files (one for each alteration parameter: CCPI, AI and mass changes in SiO2, MgO, Na2O and Ba). Each clip begins with a still view of the entire modelled area. Every other fault block then fades out and the model is rotated so that one can see the orebodies that are located within the missing fault blocks, as well as the full exterior of the visible blocks (A, C, E and G). This sequence is then repeated to show the other set of fault blocks (B, D and F). Finally, to provide an overview of the interior portions of the fault blocks, each individual modelled shell level (e.g. AI >90) is displayed and rotated in turn, until all shell levels for that model have been shown.

(WMV 35.4 mb)

(WMV 36.6 mb)

(WMV 45.8 mb)

(WMV 42.0 mb)

(WMV 37.3 mb)

(WMV 50.7 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmielowski, R.M., Jansson, N., Persson, M.F. et al. 3D modelling of hydrothermal alteration associated with VHMS deposits in the Kristineberg area, Skellefte district, northern Sweden. Miner Deposita 51, 113–130 (2016). https://doi.org/10.1007/s00126-014-0572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-014-0572-x

Keywords

Navigation