Skip to main content

Advertisement

Log in

Importance of tree height and social position for drought-related stress on tree growth and mortality

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

A higher mortality of dominant trees under drought stress is explained by impacts of tree size, canopy- and root structure and the hydraulic transport system.

Abstract

Drought stress can trigger tree mortality but the impact depends on stress intensity (water demand and availability) and on the vulnerability of the individual. Therefore, most research focusses on the species-specific properties such as water use efficiency or hydraulic conductivity that determine vulnerability. At the ecosystem scale, however, tree properties that have been found important for drought sensitivity or resistance vary with individual size and resource availability within a forest—also within the same species. This is caused by different environmental conditions for each tree and hence different growth histories of individuals generating specific anatomical and physiological features. Individual drought stress sensitivity might thus be considerably different from stand scale sensitivity. Indeed, empirical evidence shows that drought stress impact depends on tree social position which can be defined in degrees of suppression but correlated to resource availability, stress sensitivity and stress exposure. In this review, we collect such evidence and discuss the role of microclimate and soil water distribution as well as anatomical and physiological adjustments, which might serve as foundation for better-adapted management strategies to mitigate drought stress impacts. Finally, we define model requirements aiming to capture stand-scale drought responses or management impacts related to drought stress mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Figure produced with Microsoft Excel 2010

Fig. 2

The figure is redrawn from Eis (1970) using Microsoft PowerPoint 2010

Fig. 3

Figure from Bittner et al. (2012a)

Fig. 4

Figure produced with Microsoft PowerPoint 2010

Similar content being viewed by others

References

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci 106:7063–7066. doi:10.1073/pnas.0901438106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams HD, Macalady AK, Breshears DD, Allen CD, Stephenson NL, Saleska SR, Huxman TE, McDowell NG (2010) Climate-induced tree mortality: earth system consequences. Eos Trans Am Geophys Union 91:153–154. doi:10.1029/2010eo170003

    Article  Google Scholar 

  • Adams HD, Williams AP, Xu C, Rauscher SA, Jiang X, McDowell NG (2013) Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci. doi:10.3389/fpls.2013.00438

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Ambrose AR, Sillett SC, Koch GW, Van Pelt R, Antoine ME, Dawson TE (2010) Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens). Tree Physiol 30:1260–1272. doi:10.1093/treephys/tpq064

    Article  PubMed  Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36. doi:10.1038/nclimate1635

    Article  Google Scholar 

  • Aranda I, Pardos M, Puertolas J, Jimenez MD, Pardos JA (2007) Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol 27:671–677. doi:10.1093/treephys/27.5.671

    Article  PubMed  Google Scholar 

  • Arbogast T, Obeyesekere M, Wheeler MF (1993) Numerical methods for the simulation of flow in root-soil systems. SIAM J Numer Anal 30:1677–1702. doi:10.2307/2158064

    Article  Google Scholar 

  • Augspurger CK, Bartlett EA (2003) Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiol 23:517–525. doi:10.1093/treephys/23.8.517

    Article  PubMed  Google Scholar 

  • Aumann CA, David Ford E (2002) Modeling tree water flow as an unsaturated flow through a porous medium. J Theor Biol 219:415–429. doi:10.1006/jtbi.2002.3061

    Article  PubMed  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57:287–301. doi:10.1051/forest:2000119

    Article  Google Scholar 

  • Becker P, Meinzer FC, Wullschleger SD (2000) Hydraulic limitation of tree height: a critique. Funct Ecol 14:4–11. doi:10.1046/j.1365-2435.2000.00397.x

    Article  Google Scholar 

  • Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ (2015) Larger trees suffer most during drought in forests worldwide. Nat Plants 1:15139. doi:10.1038/nplants.2015.139

    Article  PubMed  Google Scholar 

  • Berdanier AB, Clark JS (2016) Multiyear drought-induced morbidity preceding tree death in southeastern US forests. Ecol Appl 26:17–23. doi:10.1890/15-0274

    Article  PubMed  Google Scholar 

  • Betsch P, Bonal D, Breda N, Montpied P, Peiffer M, Tuzet A, Granier A (2011) Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agric For Meteorol 151:531–543. doi:10.1016/j.agrformet.2010.12.008

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pne stands of the Valais, Switzerland. Ecosystems 9:330–343. doi:10.1007/s10021-005-0126-2

    Article  Google Scholar 

  • Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116:1983–1994. doi:10.1111/j.2007.0030-1299.16034.x

    Article  Google Scholar 

  • Binkley D, Campoe OC, Gspaltl M, Forrester DI (2013) Light absorption and use efficiency in forests: why patterns differ for trees and stands. For Ecol Manage 288:5–13. doi:10.1016/j.foreco.2011.11.002

    Article  Google Scholar 

  • Bircher N, Cailleret M, Bugmann H (2015) The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecol Appl 25:1303–1318. doi:10.1890/14-1462.1

    Article  PubMed  Google Scholar 

  • Bittner S, Janott M, Ritter D, Köcher P, Beese F, Priesack E (2012a) Functional–structural water flow model reveals differences between diffuse- and ring-porous tree species. Agric For Meteorol 158–159:80–89. doi:10.1016/j.agrformet.2012.02.005

    Article  Google Scholar 

  • Bittner S, Legner N, Beese F, Priesack E (2012b) Individual tree branch-level simulation of light attenuation and water flow of three F. sylvatica L. trees. J Geophys Res 117:G01037. doi:10.1029/2011jg001780

    Article  Google Scholar 

  • Blanken PD, Black TA, Neumann HH, Den Hartog G, Yang PC, Nesic Z, Lee X (2001) The seasonal water and energy exchange above and within a boreal aspen forest. J Hydrol 245:118–136. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Bohrer G, Mourad H, Laursen TA, Drewry D, Avissar R, Poggi D, Oren R, Katul GG (2005) Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: a new representation of tree hydrodynamics. Water Resour Res 41:W11404. doi:10.1029/2005wr004181

    Article  Google Scholar 

  • Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, von Gadow K (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant Soil 264:1–11. doi:10.1023/B:PLSO.0000047777.23344.a3

    Article  CAS  Google Scholar 

  • Bolte A, Kampf F, Hilbrig L (2013) Space sequestration below ground in old-growth spruce-beech forests–signs for facilitation? Front Plant Sci. doi:10.3389/fpls.2013.00322

    PubMed  PubMed Central  Google Scholar 

  • Bontemps J-D, Bouriaud O (2014) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87:109–128. doi:10.1093/forestry/cpt034

    Article  Google Scholar 

  • Brang P, Spathelf P, Larsen JB, Bauhus J, Boncčìna A, Chauvin C, Drössler L, García-Güemes C, Heiri C, Kerr G, Lexer MJ, Mason B, Mohren F, Mühlethaler U, Nocentini S, Svoboda M (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503. doi:10.1093/forestry/cpu018

    Article  Google Scholar 

  • Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306. doi:10.1093/treephys/15.5.295

    Article  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Brooks JR, Meinzer FC, Warren JM, Domec J-C, Coulombe R (2006) Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant Cell Environ 29:138–150. doi:10.1111/j.1365-3040.2005.01409.x

    Article  PubMed  Google Scholar 

  • Brown SM, Petrone RM, Chasmer L, Mendoza C, Lazerjan MS, Landhäusser SM, Silins U, Leach J, Devito KJ (2014) Atmospheric and soil moisture controls on evapotranspiration from above and within a Western Boreal Plain aspen forest. Hydrol Process 28:4449–4462. doi:10.1002/hyp.9879

    Article  Google Scholar 

  • Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5. doi:10.1007/BF00378231

    Article  Google Scholar 

  • Campo AD, Fernandes TJG, Molina AJ (2014) Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: how much can be modified the water cycle through forest management? Eur J For Res 133:879–894. doi:10.1007/s10342-014-0805-7

    Article  Google Scholar 

  • Cano FJ, Sanchez-Gomez D, Rodriguez-Calcerrada J, Warren CR, Gil L, Aranda I (2013) Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. Plant Cell Environ 36:1961–1980. doi:10.1111/pce.12103

    PubMed  Google Scholar 

  • Castagneri D, Nola P, Cherubini P, Motta R (2012) Temporal variability of size–growth relationships in a Norway spruce forest: the influences of stand structure, logging, and climate. Can J For Res 42:550–560. doi:10.1139/x2012-007

    Article  Google Scholar 

  • Cheng S, Widden P, Messier C (2005) Light and tree size influence belowground development in yellow birch and sugar maple. Plant Soil 270:321–330. doi:10.1007/s11104-004-1726-x

    Article  CAS  Google Scholar 

  • Chuang Y-L, Oren R, Bertozzi AL, Phillips N, Katul GG (2006) The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecol Model 191:447–468. doi:10.1016/j.ecolmodel.2005.03.027

    Article  Google Scholar 

  • Clair SB, Cavard X, Bergeron Y (2013) The role of facilitation and competition in the development and resilience of aspen forests. For Ecol Manage 299:91–99. doi:10.1016/j.foreco.2013.02.026

    Article  Google Scholar 

  • Collalti A, Perugini L, Santini M, Chiti T, Nolè A, Matteucci G, Valentini R (2014) A process-based model to simulate growth in forests with complex structure: evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecol Model 272:362–378. doi:10.1016/j.ecolmodel.2013.09.016

    Article  Google Scholar 

  • Cruiziat P, Cochard H, Ameglio T (2002) Hydraulic architecture of trees: main concepts and results. Ann For Sci 59:723–752. doi:10.1051/forest:2002060

    Article  Google Scholar 

  • David TS, Pinto CA, Nadezhdina N, Kurz-Besson C, Henriques MO, Quilhó T, Cermak J, Chaves MM, Pereira JS, David JS (2013) Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flow. For Ecol Manage 307:136–146. doi:10.1016/j.foreco.2013.07.012

    Article  Google Scholar 

  • Domec J-C, Gartner BL (2001) Cavitaton and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15:204–214. doi:10.1007/s004680100095

    Article  Google Scholar 

  • Dordel J, Seely B, Simard SW (2011) Relationships between simulated water stress and mortality and growth rates in underplanted Toona ciliata Roem. in subtropical Argentinean plantations. Ecol Model 222:3226–3235. doi:10.1016/j.ecolmodel.2011.05.027

    Article  Google Scholar 

  • Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: iI–Modelling of water transfer in the soil root-system with explicit account of flow within the root system–Comparison with experiments. Plant Soil 283:99–117. doi:10.1007/s11104-004-7904-z

    Article  CAS  Google Scholar 

  • Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124. doi:10.1007/s11104-013-1769-y

    Article  CAS  Google Scholar 

  • Duursma RA, Barton CVM, Eamus D, Medlyn BE, Ellsworth DS, Forster MA, Tissue DT, Linder S, McMurtrie RE (2011) Rooting depth explains [CO2]–drought interaction in Eucalyptus saligna. Tree Physiol 31:922–931. doi:10.1093/treephys/tpr030

    Article  CAS  PubMed  Google Scholar 

  • Eis S (1970) Root-growth relationship of juvenile White spruce, Alpine fir, and Lodgepole pine on three soils in the interior of British Columbia. Department of Fisheries and Forestry, Canadian Forestry Service, Ottawa, Catalogue No. Fo. 47–1276, p 14

  • Elias P, Kratochvilova I, Janous D, Marek M, Masarovicova E (1989) Stand microclimate and physiological activity of tree leaves in an oak-hornbeam forest I. Stand microclimate. Biomed Life Sci 3:227–233. doi:10.1007/BF00225357

    Google Scholar 

  • Engelbrecht BMJ (2012) Plant ecology: forests on the brink. Nature 491:675–677. doi:10.1038/nature11756

    CAS  PubMed  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56:289–295. doi:10.1051/forest:19990403

    Article  Google Scholar 

  • Ewers BE, Gower ST, Bond-Lamberty B, Wang CK (2005) Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant Cell Environ 28:660–678. doi:10.1111/j.1365-3040.2005.01312.x

    Article  Google Scholar 

  • Farquhar GD, Wong SC (1984) An empirical model of stomatal conductance. Funct Plant Biol 11:191–210. doi:10.1071/PP9840191

    CAS  Google Scholar 

  • Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095. doi:10.1111/nph.12614

    Article  CAS  PubMed  Google Scholar 

  • Finér L, Helmisaari HS, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405. doi:10.1080/11263500701625897

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189. doi:10.1093/aob/mcf027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd ML, Romme WH, Rocca ME, Hanna DP, Hanna DD (2015) Structural and regenerative changes in old-growth piñon–juniper woodlands following drought-induced mortality. For Ecol Manage 341:18–29. doi:10.1016/j.foreco.2014.12.033

    Article  Google Scholar 

  • Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. Bioscience 37:550–556. doi:10.2307/1310665

    Article  Google Scholar 

  • Früh T, Kurth W (1999) The hydraulic system of trees: theoretical framework and numerical simulation. J Theor Biol 201:251–270. doi:10.1006/jtbi.1999.1028

    Article  PubMed  Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytol 190:750–759. doi:10.1111/j.1469-8137.2010.03628.x

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt T, Häberle K-H, Matyssek R, Schulz C, Ammer C (2014) The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric For Meteorol 197:235–243. doi:10.1016/j.agrformet.2014.05.013

    Article  Google Scholar 

  • Gressler E, Jochner S, Capdevielle-Vargas RM, Morellato LPC, Menzel A (2015) Vertical variation in autumn leaf phenology of Fagus sylvatica L. in southern Germany. Agric For Meteorol 201:176–186. doi:10.1016/j.agrformet.2014.10.013

    Article  Google Scholar 

  • Grossiord C, Gessler A, Granier A, Berger S, Bréchet C, Hentschel R, Hommel R, Scherer-Lorenzen M, Bonal D (2014a) Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J Hydrol 519:3511–3519. doi:10.1016/j.jhydrol.2014.11.011 (Part D)

    Article  Google Scholar 

  • Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Chećko E, Forrester DI, Dawud SM, Finér L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A (2014b) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci 111:14812–14815. doi:10.1073/pnas.1411970111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grote R (2002) Foliage and branch biomass estimation of coniferous and deciduous tree species. Silva Fennica 36:779–788

    Article  Google Scholar 

  • Grote R, Korhonen J, Mammarella I (2011) Challenges for evaluating process-based models of gas exchange at forest sites with fetches of various species. For Syst 20:389–406. doi:10.5424/fs/20112003-11084

    Google Scholar 

  • Guillemot J, Delpierre N, Vallet P, François C, Martin-StPaul NK, Soudani K, Nicolas M, Badeau V, Dufrêne E (2014) Assessing the effects of management on forest growth across France: insights from a new functional–structural model. Ann Bot 114:779–793. doi:10.1093/aob/mcu059

    Article  PubMed  PubMed Central  Google Scholar 

  • Güneralp B, Gertner G (2007) Feedback loop dominance analysis of two tree mortality models: relationship between structure and behavior. Tree Physiol 27:269–280. doi:10.1093/treephys/27.2.269

    Article  PubMed  Google Scholar 

  • Gustafson EJ, Sturtevant BR (2013) Modeling forest mortality caused by drought stress: implications for climate Change. Ecosystems 16:60–74. doi:10.1007/s10021-012-9596-1

    Article  Google Scholar 

  • Han Q (2011) Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora. Tree Physiol 31:976–984. doi:10.1093/treephys/tpr016

    Article  CAS  PubMed  Google Scholar 

  • Hentschel R, Bittner S, Janott M, Biernath C, Holst J, Ferrio JP, Gessler A, Priesack E (2013) Simulation of stand transpiration based on a xylem water flow model for individual trees. Agric For Meteorol 182–183:31–42. doi:10.1016/j.agrformet.2013.08.002

    Article  Google Scholar 

  • Hoffmann WA, Marchin R, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol 17:2731–2742. doi:10.1111/j.1365-2486.2011.02401.x

    Article  Google Scholar 

  • Holst T, Mayer H, Schindler D (2004) Microclimate within beech stands–part II: thermal conditions. Eur J For Res 123:13–28. doi:10.1007/s10342-004-0019-5

    Article  Google Scholar 

  • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees 20:67–78. doi:10.1007/s00468-005-0014-6

    Article  Google Scholar 

  • Hommel R, Siegwolf R, Saurer M, Farquhar GD, Kayler Z, Ferrio JP, Gessler A (2014) Drought response of mesophyll conductance in forest understory species–impacts on water-use efficiency and interactions with leaf water movement. Physiol Plant 152:98–114. doi:10.1111/ppl.12160

    Article  CAS  PubMed  Google Scholar 

  • Hubbard RM, Bond BJ, Ryan MG (1999) Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol 19:165–172. doi:10.1093/treephys/19.3.165

    Article  PubMed  Google Scholar 

  • IPCC (2013) Climate Change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boshung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University, p 1535

  • Ivanov VY, Hutyra LR, Wofsy SC, Munger JW, Saleska SR, de Oliveira RC, de Camargo PB (2012) Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water Resour Res 48:W12507. doi:10.1029/2012wr011972

    Article  Google Scholar 

  • Janott M, Gayler S, Gessler A, Javaux M, Klier C, Priesack E (2011) A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant Soil 341:233–256. doi:10.1007/s11104-010-0639-0

    Article  CAS  Google Scholar 

  • Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone 7:1079–1088. doi:10.2136/vzj2007.0115

    Article  Google Scholar 

  • Jensen A, Löf M, Witzell J (2012) Effects of competition and indirect facilitation by shrubs on Quercus robur saplings. Plant Ecol 213:535–543. doi:10.1007/s11258-012-0019-3

    Article  Google Scholar 

  • Kanalas P, Fenyvesi A, Kis J, Szöllösi E, Olah V, Ander I, Meszaros I (2010) Seasonal and diurnal variability in sap flow intensity of mature sessile oak (Quercus petraea (Matt.) Liebl.) trees in relation to microclimatic conditions. Acta Biol Hung 61:95–108. doi:10.1556/ABiol.61.2010.Suppl.10

    Article  PubMed  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854. doi:10.1038/nature02417

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234. doi:10.1093/treephys/tpq055

    Article  CAS  PubMed  Google Scholar 

  • Kuhr M (2000) Grobwurzelarchitektur in Abhängigkeit von Baumart, Alter, Standort und sozialer Stellung. Fakultät für Forstwissenschaften und Waldökologie vol Dissertation. Georg-August-Universität, Göttingen, p 136

  • Latte N, Lebourgeois F, Claessens H (2016) Growth partitioning within beech trees (Fagus sylvatica L.) varies in response to summer heat waves and related droughts. Trees 30:189–201. doi:10.1007/s00468-015-1288-y

    Article  Google Scholar 

  • Le Goff N, Ottorini J-M (2001) Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann For Sci 58:1–13. doi:10.1051/forest:2001104

    Article  Google Scholar 

  • Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manage 303:61–71. doi:10.1016/j.foreco.2013.04.003

    Article  Google Scholar 

  • Li S, Gao J, Zhu Q, Zeng L, Liu J (2015) A dynamic root simulation model in response to soil moisture heterogeneity. Math Comput Simulat 113:40–50. doi:10.1016/j.matcom.2014.11.030

    Article  Google Scholar 

  • Lindroth A, Cienciala E (1996) Water use efficiency of short-rotation Salix viminalis at leaf, tree and stand scales. Tree Physiol 16:257–262. doi:10.1093/treephys/16.1-2.257

    Article  PubMed  Google Scholar 

  • Liu Y, Muller RN (1993) Effect of drought and frost on radial growth of overstory and understory stems in a deciduous forest. Am Midl Nat 129:19–25. doi:10.2307/2426431

    Article  Google Scholar 

  • Liu C, Westman CJ (2009) Biomass in a Norway spruce–Scots pine forest: a comparison of estimation methods. Boreal Environ Res 14:875–888

    Google Scholar 

  • Luo Y, Chen HYH (2011) Competition, species interaction and ageing control tree mortality in boreal forests. J Ecol 99:1470–1480. doi:10.1111/j.1365-2745.2011.01882.x

    Article  Google Scholar 

  • Magnani F, Bensada A, Cinnirella S, Ripullone F, Borghetti M (2008) Hydraulic limitations and water-use efficiency in Pinus pinaster along a chronosequence. Can J For Res 38:73–81. doi:10.1139/X07-120

    Article  Google Scholar 

  • Manion PD (1981) Tree disease concepts. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Martin-Benito D, Cherubini P, del Rio M, Canellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373. doi:10.1007/s00468-007-0191-6

    Article  Google Scholar 

  • Martínez-Vilalta J, López BC, Loepfe L, Lloret F (2012) Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168:877–888. doi:10.1007/s00442-011-2132-8

    Article  PubMed  Google Scholar 

  • Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands–part I: photosynthetically active radiation. Forstwissenschaftliches Centralblatt 121:301–321. doi:10.1046/j.1439-0337.2002.02038.x

    Article  Google Scholar 

  • McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Change 5:669–672. doi:10.1038/nclimate2641

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. doi:10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  • McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, Ogée J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytol 200:304–321. doi:10.1111/nph.12465

    Article  CAS  PubMed  Google Scholar 

  • Meinzer FC, Bond BJ, Warren JM, Woodruff DR (2005) Does water transport scale universally with tree size? Funct Ecol 19:558–565. doi:10.1111/j.1365-2435.2005.01017.x

    Article  Google Scholar 

  • Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015) Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For Ecol Manage 339:22–33. doi:10.1016/j.foreco.2014.11.032

    Article  Google Scholar 

  • Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze E-D, Ammer C (2016) Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Change Biol 22:903–920. doi:10.1111/gcb.13113

    Article  Google Scholar 

  • Midgley JJ (2003) Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends Ecol Evol 18:5–6. doi:10.1016/S0169-5347(02)00016-2

    Article  Google Scholar 

  • Millikin CS, Bledsoe CS (1999) Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California. Plant Soil 214:27–38. doi:10.1023/a:1004653932675

    Article  CAS  Google Scholar 

  • Mölder I, Leuschner C (2014) European beech grows better and is less drought sensitive in mixed than in pure stands: tree neighbourhood effects on radial increment. Trees 28:777–792. doi:10.1007/s00468-014-0991-4

    Article  Google Scholar 

  • Mueller RC, Scudder CM, Porter ME, Talbot Trotter R, Gehring CA, Whitham TG (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093. doi:10.1111/j.1365-2745.2005.01042.x

    Article  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanzen. Gustav Fischer, Jena

    Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390. doi:10.2307/1939190

    Article  Google Scholar 

  • Neubauer M, Demant B, Bolte A (2015) Tree-based estimator for below-ground biomass of Pinus sylvestris L. (Einzelbaumbezogene Schätzfunktionen zur unterirdischen Biomasse der Wald-Kiefer). Forstarchiv 86:42–47. doi:10.4432/0300-4112-86-42

    Google Scholar 

  • Niinemets Ü (2002) Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris. Tree Physiol 22:515–535. doi:10.1093/treephys/22.8.515

    Article  PubMed  Google Scholar 

  • Niklas KJ, Enquist BJ (2002) On the vegetative biomass partitioning of seed plant leaves, stems, and roots. Am Nat 159:482–497. doi:10.1086/339459

    Article  PubMed  Google Scholar 

  • Ogaya R, Barbeta A, Başnou C, Peñuelas J (2015) Satellite data as indicators of tree biomass growth and forest dieback in a Mediterranean holm oak forest. Ann For Sci 72:135–144. doi:10.1007/s13595-014-0408-y

    Article  Google Scholar 

  • O’Grady AP, Mitchell PJM, Pinkard EA, Tissue DT (2013) Thirsty roots and hungry leaves: unravelling the roles of carbon and water dynamics in tree mortality. New Phytol 200:294–297. doi:10.1111/nph.12451

    Article  PubMed  Google Scholar 

  • Oliet JA, Jacobs DF (2007) Microclimatic conditions and plant morpho-physiological development within a tree shelter environment during establishment of Quercus ilex seedlings. Agric For Meteorol 144:58–72. doi:10.1016/j.agrformet.2007.01.012

    Article  Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:474–484. doi:10.1007/s004680050110

    Article  Google Scholar 

  • Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1:467–471. doi:10.1038/nclimate1293

    Article  Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manage 242:688–699. doi:10.16/j.foreco.2007.02.007

    Article  Google Scholar 

  • Piper FI, Fajardo A (2011) No evidence of carbon limitation with tree age and height in Nothofagus pumilio under Mediterranean and temperate climate conditions. Ann Bot 108:907–917. doi:10.1093/aob/mcr195

    Article  PubMed  PubMed Central  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50. doi:10.1111/j.1469-8137.2011.03952.x

    Article  CAS  PubMed  Google Scholar 

  • Pothier D, Margolis HA, Waring RH (1989) Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Can J For Res 19:432–439. doi:10.1139/x89-068

    Article  Google Scholar 

  • Pretzsch H (2009) Growing space and competitive situation of individual trees. Forest dynamics, growth and yield, Springer, Berlin, Heidelberg, p 291–336

  • Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162:3–21. doi:10.1016/S0378-1127(02)00047-6

    Article  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol (Stuttg) 15:483–495. doi:10.1111/j.1438-8677.2012.00670.x

    Article  CAS  Google Scholar 

  • Rambo TR, North MP (2009) Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. For Ecol Manage 257:435–442. doi:10.1016/j.foreco.2008.09.029

    Article  Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489. doi:10.1007/bf00379405

    Article  Google Scholar 

  • Richardson AD, O’Keefe J (2010) Phenological differences between understory and overstory: A case study using the long-term Harvard Forest records. In: Noormets A (ed) Phenology of ecosystem processes. Springer Science and Business Media, LLC, Berlin, pp 87–117

    Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Change Biol 19:229–240. doi:10.1111/gcb.12038

    Article  Google Scholar 

  • Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nat Adv Online Publ. doi:10.1038/nature15539

    Google Scholar 

  • Ruiz-Benito P, Lines ER, Gomez-Aparicio L, Zavala MA, Coomes DA (2013) Patterns and drivers of tree mortality in Iberian Forests: climatic effects are modified by competition. PLoS One 8:e56843. doi:10.1371/journal.pone.0056843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–383. doi:10.1111/j.1365-3040.2005.01478.x

    Article  PubMed  Google Scholar 

  • Sala A, Hoch G (2009) Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ 32:22–30. doi:10.1111/j.1365-3040.2008.01896.x

    Article  PubMed  Google Scholar 

  • Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281. doi:10.1111/j.1469-8137.2009.03167.x

    Article  PubMed  Google Scholar 

  • Schäfer KVR, Oren R, Tenhunen JD (2000) The effect of tree height on crown level stomatal conductance. Plant Cell Environ 23:365–375. doi:10.1046/j.1365-3040.2000.00553.x

    Article  Google Scholar 

  • Schmid I, Kazda M (2005) Clustered root distribution in mature stands of Fagus sylvatica and Picea abies. Ecophysiology 144:25–31. doi:10.1007/s004442-005-0036-1

    Google Scholar 

  • Schneider CL, Attinger S, Delfs JO, Hildebrandt A (2010) Implementing small scale processes at the soil-plant interface–the role of root architectures for calculating root water uptake profiles. Hydrol Earth Syst Sci 14:279–289. doi:10.5194/hess-14-279-2010

    Article  Google Scholar 

  • Schröder J, Röhle H, Gerold D, Münder K (2007) Modeling individual-tree growth in stands under forest conversion in East Germany. Eur J Forest Res 126:459–472. doi:10.1007/s10342-006-0167-x

    Article  Google Scholar 

  • Schröder T, Javaux M, Vanderborght J, Körfgen B, Vereecken H (2009) Implementation of a microscopic soil–root hydraulic conductivity drop function in a three-dimensional soil–root architecture water transfer model. Vadose Zone 8:783–792. doi:10.2136/vzj2008.0116

    Article  Google Scholar 

  • Seiwa K (1999) Changes in leaf phenology are dependent on tree height in Acer mono, a deciduous broad-leaved tree. Ann Bot 85:355–361. doi:10.1006/anbo.1998.0831

    Article  Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161. doi:10.1111/pce.12141

    Article  CAS  PubMed  Google Scholar 

  • Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331. doi:10.1046/j.1365-2435.2002.00626.x

    Article  Google Scholar 

  • Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:632–645. doi:10.1111/j.1365-3040.2007.01765.x

    Article  PubMed  Google Scholar 

  • Thompson DR, Hinckley TM (1977) Effect of vertical and temporal variations in stand microclimate and soil moisture on water status of several species in an Oak-Hickory forest. Am Midl Nat 97:373–380. doi:10.2307/2425101

    Article  Google Scholar 

  • To Kumagai (2001) Modeling water transportation and storage in sapwood–model development and validation. Agric For Meteorol 109:105–115. doi:10.1016/S0168-1923(01)00261-1

    Article  Google Scholar 

  • Trouvé R, Bontemps J-D, Collet C, Seynave I, Lebourgeois F (2014) Growth partitioning in forest stands is affected by stand density and summer drought in sessile oak and Douglas-fir. For Ecol Manage 334:358–368. doi:10.1016/j.foreco.2014.09.020

    Article  Google Scholar 

  • Trouvé R, Bontemps J-D, Seynave I, Collet C, Lebourgeois F (2015) Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.). Tree Physiol 35:1035–1046. doi:10.1093/treephys/tpv067

    Article  PubMed  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Valladares F, Zaragoza-Castells J, Sanchez-Gomez D, Matesanz S, Alonso B, Portsmuth A, Delgado A, Atkin OK (2008) Is shade beneficial for Mediterranean shrubs experiencing periods of extreme drought and late-winter frosts? Ann Bot 102:923–933. doi:10.1093/aob/mcn182

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubkova M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G (2011) Drought and ecosystem carbon cycling. Agric For Meteorol 151:765–773. doi:10.1016/j.agrformet.2011.01.018

    Article  Google Scholar 

  • van Mantgem PJ, Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol Lett 10:909–916. doi:10.1111/j.1461-0248.2007.01080.x

    Article  PubMed  Google Scholar 

  • Van Wittenberghe S, Adriaenssens S, Staelens J, Verheyen K, Samson R (2012) Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees 26:1427–1438. doi:10.1016/S0169-5347(02)00016-2

    Article  Google Scholar 

  • Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830. doi:10.1093/treephys/19.12.823

    Article  PubMed  Google Scholar 

  • Vitasse Y (2013) Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol 198:149–155. doi:10.1111/nph.12130

    Article  PubMed  Google Scholar 

  • Vitasse Y, Lenz A, Hoch G, Körner C (2014) Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J Ecol 102:981–988. doi:10.1111/1365-2745.12251

    Article  Google Scholar 

  • Vogt KA, Moore EE, Vogt DJ, Redlin MJ, Edmonds RL (1983) Conifer fine root and mycorrhizal root biomass within the forest floors of Douglas-fir stands of different ages and site productivities. Can J For Res 13:429–437. doi:10.1139/x83-065

    Article  Google Scholar 

  • von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166–167:144–155. doi:10.1016/j.agrformet.2012.07.018

    Article  Google Scholar 

  • Wang W, Peng C, Kneeshaw DD, Larocque GR, Luo Z (2012) Drought-induced tree mortality: ecological consequences, causes, and modeling. Environ Rev 20:109–121. doi:10.1139/a2012-004

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667. doi:10.1038/23251

    Article  CAS  Google Scholar 

  • Wirth C, Schumacher J, Schulze ED (2004) Generic biomass functions for Norway spruce in Central Europe–a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139. doi:10.1093/treephys/24.2.121

    Article  PubMed  Google Scholar 

  • Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ 34:1920–1930. doi:10.1111/j.1365-3040.2011.02388.x

    Article  CAS  PubMed  Google Scholar 

  • Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007) Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant Cell Environ 30:559–569. doi:10.1111/j.1365-3040.2007.01652.x

    Article  PubMed  Google Scholar 

  • Wu J, Liu Y, Jelinski DE (2000) Effects of leaf area profiles and canopy stratification on simulated energy fluxes: the problem of vertical spatial scale. Ecol Model 134:283–297. doi:10.1016/S0304-3800(00)00353-7

    Article  Google Scholar 

  • Wutzler T, Wirth C, Schumacher J (2008) Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Can J For Res 38:1661–1678. doi:10.1139/X07-194

    Article  Google Scholar 

  • Yi C (2008) Momentum transfer within Canopies. J Appl Meteorol Climatol 47:262–275. doi:10.1175/2007JAMC1667.1

    Article  Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527

    Google Scholar 

  • Yuan ZY, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221. doi:10.1080/07352689.2010.483579

    Article  CAS  Google Scholar 

  • Zang C, Pretzsch H, Rothe A (2012) Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees 26:557–569. doi:10.1007/s00468-011-0617-z

    Article  Google Scholar 

  • Zapater M, Hossann C, Bréda N, Bréchet C, Bonal D, Granier A (2011) Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25:885–894. doi:10.1007/s00468-011-0563-9

    Article  Google Scholar 

  • Zeppel MJB, Anderegg WRL, Adams HD (2013) Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytol 197:372–374. doi:10.1111/nph.12090

    Article  PubMed  Google Scholar 

  • Zhang Y, Zheng Q, Tyree M (2012) Factors controlling plasticity of leaf morphology in Robinia pseudoacacia I: height-associated variation in leaf structure. Ann For Sci 69:29–37. doi:10.1007/s13595-011-0133-8

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support by the German Research Foundation (DFG) under contract numbers GE 1090/8-1 and 9-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Grote.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grote, R., Gessler, A., Hommel, R. et al. Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees 30, 1467–1482 (2016). https://doi.org/10.1007/s00468-016-1446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1446-x

Keywords

Navigation