Skip to main content
Log in

Acclimatization of secondary somatic embryos derived plants of Eucalyptus globulus Labill.: an ultrastructural approach

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

This paper reports the complete process from secondary emblings (SE-derived plants) regeneration to acclimatization of Eucalyptus globulus and describes histocytological changes that occur in leaves from in vitro to ex vitro acclimatization for a 3-month period. After elongation, plants were transferred to pots with sterilized peat:perlite and acclimatized in a phytotron, with progressive reduction of RH and increase of light intensity. Histocytological analyses were performed in fixed material using light microscopy and ultrastructural changes followed by electron microscopy (SEM and TEM). The protocol used allowed the successful acclimatization of the emblings. Plants looked morphologically normal and FCM screening revealed no ploidy or DNA content abnormalities. Histocytological analyses showed significant changes along time, mostly in stomata shape and aperture, starch reserves, chloroplast morphology and mesophyll differentiation. This is the first report concerning emblings acclimatization to ex vitro conditions in Eucalyptus. It was clearly demonstrated that during acclimatization emblings suffered profound changes in leaf morphology in order to successfully adapt to ex vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barry-Etienne D, Bertrand B, Vasquez N, Etienne H (2002) Comparison of somatic embryogenesis-derived coffee (Coffea arabica L.) plantlets regenerated in vitro or ex vitro: morphological, mineral and water characteristics. Ann Bot 90:77–85

    Article  PubMed  CAS  Google Scholar 

  • Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. Somatic embryos originated from leaf explants. Ann Bot 92:129–136

    Google Scholar 

  • Debergh PC, Maene LJ (1981) A scheme for commercial propagation of ornamental plants by tissue culture. Sci Hortic 14:335–345

    Article  Google Scholar 

  • Eldridge K, Davidson J, Harwood C, van Wyk G (1993) Eucalypt domestication and breeding. Clarendon, Oxford

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell-cycle in intact plant-tissues. Science 220:1049–1051

    Google Scholar 

  • Grout B, Aston MJ (1977) Transplanting of cauliflower plants regenerated from meristem culture. I. Water loss and water transfer related to changes in leaf wax and to xylem regeneration. Hortic Res 17:107–112

    Google Scholar 

  • Hazarika BN (2003) Acclimatization of tissue-culture plants. Curr Sci 85(12):1704–1712

    CAS  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • James SA, Smith WK, Vogelmann TC (1999) Ontogenetic differences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp. globulus (Myrtaceae). Am J Bot 86(2):198–207

    Article  Google Scholar 

  • Jones NB, Drennan PM, van Staden J (1993) Leaf anatomy, chloroplast organization and photosynthetic rate of hyperhydric Eucalyptus saligna Sm. material. S Afr J Bot 59:551–555

    Google Scholar 

  • Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107–113

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Pinto G, Lopes T, Santos C (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. plants using flow cytometry. Planta 221:815–822

    Article  PubMed  CAS  Google Scholar 

  • Louro RP (1994) Análise ultraestrutural e imunocitoquimica do híbrido Eucalyptus grandis × Eucalyptus urophylla cultivado in vitro e ex vitro. PhD thesis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

  • Louro RP, Dos Santos AV, Machado RD (1999) Ultrastructure of Eucalyptus grandis × Eucalyptus urophylla. I. Shoots cultivated in vitro in multiplication and elongation-rooting medium. Int J Plant Sci 160(2):217–227

    Article  Google Scholar 

  • Louro RP, Santiagi LJM, Dos Santos AV, Machado RD (2003) Ultrastructure of Eucalyptus grandis × Eucalyptus urophylla plants cultivated ex vitro in greenhouse and field conditions. Trees 17:11–22

    Article  Google Scholar 

  • Muralidharan EM, Gupta PK, Mascarenhas AF (1989) Plantlet production through high frequency somatic embryogenesis in long term cultures of Eucalyptus citriodora. Plant Cell Rep 8:41–43

    Article  Google Scholar 

  • Pereira JS, Tenhunen JD, Lange OL (1987) Stomatal control of photosynthesis of Eucalyptus globulus Labill. trees under field conditions in Portugal. J Exp Bot 38:1678–1688

    Article  Google Scholar 

  • Pinto G, Santos C, Neves L, Araújo C (2002a) Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep 21:208–213

    Article  CAS  Google Scholar 

  • Pinto G, Valentim H, Costa A, Santos C (2002b) Somatic embryogenesis in leaf callus from mature Quercus suber L. tree. In Vitro Cell Dev Biol Plant 38:569–572

    Article  CAS  Google Scholar 

  • Pinto G, Loureiro J, Lopes T, Santos CV (2004) Analysis of genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587

    Article  PubMed  CAS  Google Scholar 

  • Pinto G, Silva S, Araújo C, Neves L, Park Y-S, Santos C (2008a) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tissue Organ Cult 95:79–88

    Article  CAS  Google Scholar 

  • Pinto G, Park Y-S, Neves L, Araujo C, Santos C (2008b) Genetic control of somatic embryogenesis in Eucalyptus globulus Labill. Plant Cell Rep 27:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Pinto G, Park Y-S, Silva S, Araújo C, Neves L, Santos C (2008c) Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globulus Labill. Plant Cell Tissue Organ Cult 95:69–79

    Article  CAS  Google Scholar 

  • Pinto G, Silva S, Araújo C, Neves L, Santos C (2010) Histocytological changes and reserves accumulation during somatic embryogenesis in Eucalyptus globulus. Trees 24:763–769

    Article  Google Scholar 

  • Piqueras A, Van Huylenbroeck JM, Han BH, Debergh PC (1998) Carbohydrate partitioning and metabolism during acclimatization of micropropagated Calathea. Plant Growth Regul 26:25–31

    Article  CAS  Google Scholar 

  • Pospisilova J, Ticha I, Kadlecek P, Haisel D, Plzakova S (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42(4):481–497

    Article  Google Scholar 

  • Prakash MG, Gurumurthi K (2005) Somatic embryogenesis and plant regeneration in Eucalyptus tereticornis. Sm Cur Sci 88(8):1311–1316

    Google Scholar 

  • Smith MD, Licatalosi DD, Thompson JE (2000) Co-association of cytochrome f catabolites and plastid-lipid-associated protein with chloroplast lipid particles. Plant Physiol 124(1):211–222

    Google Scholar 

  • Tremblay L, Levasseur C, Tremblay FM (1999) Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of same factors involved in genetic instability. Am J Bot 86(10):1373–1381

    Article  PubMed  Google Scholar 

  • Van Huylenbroeck JM, Debergh PC (1996) Impact of sugar concentration in vitro on photosynthesis and carbon metabolism during ex vitro acclimatization of Spathiphyllum plantlets. Physiol Plant 96:298–304

    Article  Google Scholar 

  • Watt MP, Blakeway F, Cresswell CF, Harman B (1991) Somatic embryogenesis in Eucalyptus grandis. S Afr For J 157:59–65

    Google Scholar 

  • Wetzstein HY, Sommer HE (1982) Leaf anatomy of tissue cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Am J Bot 69:1579–1586

    Article  Google Scholar 

  • Ytterberg A, Peltier J, Van Wijk K (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman RH (1981) Micropropagation of fruit plants. Acta Hortic 120:217–222

    Google Scholar 

Download references

Acknowledgments

Authors thank Celbi for providing the material used in this study. Thanks are also due to José Dias for technical assistance. FCT supported the fellowship of Sónia Silva (SFRH/BD/32257/2006) and Maria Celeste Dias (SFRH/BPD/41700/2007). This study was supported by FCT Project PTDC/AGR-CFL/112996/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conceição Santos.

Additional information

Communicated by D. Treutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, G., Silva, S., Loureiro, J. et al. Acclimatization of secondary somatic embryos derived plants of Eucalyptus globulus Labill.: an ultrastructural approach. Trees 25, 383–392 (2011). https://doi.org/10.1007/s00468-010-0513-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0513-y

Keywords

Navigation