Skip to main content
Log in

Geoelectrical and geological structure of the crust in Western Slovakia

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Electrical resistivity of the Earth’s crust is sensitive to a wide range of petrological and physical parameters, and it particularly clearly indicates crustal zones that have been tectonically or thermodynamically disturbed. A complex geological structure of the Alpine nappe system, remnants of older Hercynian units and Neogene block tectonics in Western Slovakia has been a target of recent magnetotelluric investigations which made a new and more precise identification of the crustal structural elements of the Western Carpathians possible. A NW-SE magnetotelluric profile, 150 km long, with 30 broad-band and 3 long-period magnetotelluric sites, was deployed, crossing the major regional tectonic elements listed from the north: Brunia (as a part of the European platform), Outer Carpathian Flysch, Klippen Belt, blocks of Penninic or Oravicum crust, Tatricum and Veporicum. Magnetotelluric models were combined with previous seismic and gravimetric results and jointly interpreted in the final integrated geological model. The magnetotelluric models of geoelectrical structures exhibit strong correlation with the geological structures of the crust in this part of the Western Carpathians. The significant resemblance in geoelectrical and crustal geological structures are highlighted in shallow resistive structures of the covering formations represented by mainly Tertiary sediments and volcanics. Also in the deeper parts of the crust highly resistive and conductive structures are shown, which reflect the original building Hercynian crust, with superposition of granitoids or granitised complexes and lower metamorphosed complexes. Another important typical feature in the construction of the Western Carpathians is the existence of young Neogene steep fault zones exhibited by conductive zones within the whole crust. The most significant fault zones separate individual blocks of the Western Carpathians and the Western Carpathians itself from the European Platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alasonati Tašárová Z., Afonso J.C., Bielik M., Götze H.-J. and Hók J., 2009. The lithospheric structure of the Western Carpathian-Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modeling. Tectonophysics, 475, 454–469.

    Article  Google Scholar 

  • Bahr K., 1988. Interpretation of the magnetotelluric tensor: regional induction and local telluric distortion. J. Geophys., 62, 119–127.

    Google Scholar 

  • Bezák V., Šefara J., Bielik M. and Kubeš P., 1997. Models of the Western Carpathians lithosphere. In: Grecula P. (Ed.), Geological Evolution of the Western Carpathians. Mineralia Slovaca. Monograph. State Geological Institute of Dionýz Štúr, Bratislava, Slovakia, 25–34.

    Google Scholar 

  • Bezák V., Broska I., Ivanička J., Reichwalder P., Vozár J., Polák M., Havrila M., Mello J., Biely A., Plašienka D., Potfaj M., Konečný V., Lexa J., Kaličiak M., Žec B., Vass D., Elečko M., Janočko J., Pereszlényi M., Marko M., Maglay J. and Pristaš J., 2004. Tectonic Map of the Slovak Republic 1:500 000. State Geological Institute of Dionýz Štúr, Bratislava, Slovakia.

    Google Scholar 

  • Bezák V., Biely A., Elečko M., Konečný V., Mello J., Polák M. and Potfaj M., 2011. A new synthesis of the geological structure of Slovakia — the general geological map at 1: 200 000 scale. Geol. Q., 55, 1–8.

    Google Scholar 

  • Bielik M., 1995. Continental convergence in the Carpathian region by density modelling. Geol. Carpath., 46, 3–12.

    Google Scholar 

  • Bielik M., Šefara J., Kováč M., Bezák V. and Plašienka D., 2004 The Western Carpathians — interaction of Hercynian and Alpine processes. Tectonophysics, 393, 63–86.

    Article  Google Scholar 

  • Bielik M., Kloska K., Meurers B., Švancara J., Wybraniec S., Fancsik T., Grad M., Grad T., Guterch A., Katona M., Królikowski C., Mikuška J., Pašteka R., Petecki Z., Polechonska O., Ruess D., Szalaiová V., Šefara J. and Vozár J., 2006. Gravity anomaly map of the CELEBRATION 2000 region. Geol. Carpath., 57, 145–156.

    Google Scholar 

  • Cagniard L., 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18, 605–635.

    Article  Google Scholar 

  • Červ V., Kováčiková S., Pek J., Pěčová J. and Praus O., 2001. Geoelectrical structure across the Bohemian Massif and the transition zone to the West Carpathians. Tectonophysics, 332, 201–210.

    Article  Google Scholar 

  • Červ V., Pek J. and Menvielle M., 2010. Bayesian approach to magnetotelluric tensor decomposition. Ann. Geophys., 53(2), 21–32.

    Google Scholar 

  • Csicsay K., 2011. Dvojrozmerná a trojrozmerná integrovaná interpretácia tiažového poľa v rámci medzinárodného projektu CELEBRATION 2000 (2D and 3D Integrated Interpretation of Gravity Field within International Project CELEBRATION 2000). PhD Thesis. Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic (in Slovak).

    Google Scholar 

  • Dérerová J., Zeyen H., Bielik M. and Salman K., 2006. Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the Eastern Carpathians. Tectonics, 25, TC3009.

    Article  Google Scholar 

  • Grand T., Šefara J., Bielik M., Bezák V. and Pašteka R., 2002. Reinterpretation of gravimetric data in the Western Carpathians. Krystalinikum, 28, 103–108.

    Google Scholar 

  • Groom R.W. and Bailey R.C., 1989. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. J. Geophys. Res., 94, 1913–1925.

    Article  Google Scholar 

  • Hrubcová P., Šroda P., Grad M., Geissler W.H., Guterch A., Vozár J. and Hegedüs E., 2010. From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. Geophys. J. Int., 183, 611–633.

    Article  Google Scholar 

  • Hvoždara M. and Vozár J., 2004. Laboratory and geophysical implications for explanation of nature of Carpathian conductivity anomaly. Acta Geophys. Pol., 52, 497–508.

    Google Scholar 

  • Janik T., Grad M., Guterch A., Vozár J., Bielik M., Vozárová A., Hegedüs E., Kovács C.A., Kovács I., Keller G.R. and CELEBRATION 2000 Working Group, 2011. Crustal structure of the Western Carpathians and Pannonian Basin: Seismic models from CELEBRATION 2000 data and geological implications. J. Geodyn., 52, 97–113.

    Article  Google Scholar 

  • Jankowski J., SzymaŁski A., Pěč K., Červ V., Petr V., Pěčová J. and Praus O., 1977. Anomalous induction in the Carpathians. Stud. Geophys. Geod., 21, 35–57.

    Article  Google Scholar 

  • Jankowski J., Jóźwiak W. and Vozár J., 2008. Arguments for ionic nature of the Carpathian electric conductivity anomaly. Acta Geophys., 56, 455–465.

    Article  Google Scholar 

  • Kováčiková S., Červ V. and Praus O., 2005. Modelling of the conductance distribution at the eastern margin of the European Hercynides. Stud. Geophys. Geod., 49, 403–421.

    Article  Google Scholar 

  • Kubeš P., Bezák V., Kucharič Ľ., Filo M., Vozár J., Konečný V., Kohút M. and Gluch A., 2010. Magnetic field of the Western Carpathians (Slovakia): reflection structure of the crust. Geol. Carpath., 61, 437–447.

    Google Scholar 

  • Kucharič Ľ., Bezák V., Kubeš P., Konečný V. and Vozár J., 2013. New magnetic anomalies of the Outer Carpathians in NE Slovakia and their relationship to the Carpathian Conductivity Zone. Geol. Q., 57, 123–134.

    Google Scholar 

  • Lexa J., Bezák V., Elečko M., Mello J., Polák M., Potfaj M. and Vozár J. (Eds), 2000. Geological Map of the Western Carpathians and Adjacent Areas, Scale 1:500000. State Geological Institute of Dionýz Štúr, Bratislava, Slovakia.

    Google Scholar 

  • Lillie R., Bielik M., Babuška V. and Plomerová J., 1994. Gravity modeling of the lithosphere in the Eastern Alpine-Western Carpathian-Pannonian Basin region. Tectonophysics, 231, 215–235.

    Article  Google Scholar 

  • McNeice G.W. and Jones A.G., 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 66, 158–173.

    Article  Google Scholar 

  • Niblett E.R. and Sayn-Wittgenstein C., 1960. Variation of electrical conductivity with depth by the magnetotelluric method. Geophysics, 25, 998–1008.

    Article  Google Scholar 

  • Pek J., Santos F.A.M. and Li Y., 2012. Non-linear conjugate gradient magnetotelluric inversion for 2-D anisotropic conductivities. In: Börner R.-U. and Schwalenberg K. (Eds), Protokoll über das 24. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung. Deutsches GeoForschungsZentrum, Potsdam, Germany, 187–206.

    Google Scholar 

  • Plašienka D., Grecula P., Putiš M., Kováč M. and Hovorka D., 1997. Evolution and structure of the Western Carpathians: an overview. In: Grecula P. (Ed.), Geological Evolution of the Western Carpathians. Mineralia Slovaca. Monograph. State Geological Institute of Dionýz Štúr, Bratislava, Slovakia, 7–24.

    Google Scholar 

  • Prutkin I., Vajda P., Bielik M., Bezák V. and Tenzer R., 2014. Joint interpretation of gravity and magnetic data in the Kolárovo anomaly region by separation of sources and the inversion method of local corrections. Geol. Carpath., 65 (in press).

  • Rodi W. and Mackie R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174–187.

    Article  Google Scholar 

  • Swift C.M., 1967. A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southwestern United States. PhD Thesis. Department of Geology and Geophysics, MIT, Cambridge, MA (reprinted in Magnetotelluric Methods, 156–166, ed. Vozoff, K., Geophys. Reprint Ser. No. 5, 1988, SEG, Tulsa, OK).

    Google Scholar 

  • Szalaiová V. and Šantavý J., 1996. Gravimetric map of the western part of Slovakia and its possible interpretations. Slovak Geol. Mag., 3-4, 369–377.

    Google Scholar 

  • Šefara J., Bielik M., Bodnár J., Čížek P., Filo M., Gnojek I., Grecula P., Halmešová S., Husák Ľ., Janoštík M., Král M., Kubeš P., Kurkin M., Leško B., Mikuška J., Muška P., Obernauer D., Pospíšil L., Putiš M., Šutora A. and Velich, 1987. Štruktúrno-tektonická mapa vnútorných Západných Karpát pre účely prognózovania ložísk — geofyzikálne interpretácie. Vysvetlivky k mapám. (Structure-Tectonic Map of the Inner Western Carpathians for Prognoses of Oore Deposits — Geophysical iInterpretations. Explanation to the Collection of Maps). Slovenský geologický úrad, Bratislava, Slovakia, 267 pp. (in Slovak).

    Google Scholar 

  • Tikhonov A.N., 1950. On determining electrical characteristics of the deep layers of the Earth’s crust. Doklady Acad. Sci. USSR, 73, 295–297 (in Russian).

    Google Scholar 

  • Tomek Č., 1993. Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics, 226, 417–431.

    Article  Google Scholar 

  • Tomek Č., Švancara J. and Budík L., 1979. The depth and the origin of the West Carpathian gravity low. Earth Planet. Sci. Lett., 44, 39–42.

    Article  Google Scholar 

  • Vozoff K., 1972. The magnetotelluric method in the exploration of sedimentary basins. Geophysics, 37, 98–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Bezák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezák, V., Pek, J., Vozár, J. et al. Geoelectrical and geological structure of the crust in Western Slovakia. Stud Geophys Geod 58, 473–488 (2014). https://doi.org/10.1007/s11200-013-0491-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0491-9

Keywords

Navigation