Skip to main content
Log in

Seismic velocity estimation from post-critical wide-angle reflections in layered structures

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The travel time inversion of wide-angle seismic data is a technique commonly used in the deep seismic sounding. We propose an application of this technique to a smaller scale of a sedimentary layer, where the characteristics of seismic observations changes significantly. Field observations confirmed by synthetic analysis recognize the dominant amplitudes of wide-angle post-critical reflections. A case study is presented in this paper, of a joint interpretation of conventional reflection seismic with reflection imaging, combined with the wide-angle travel time inversion of additional full-spread observations. A joint interpretation results in a precise recognition of the seismic velocity distribution, that is further used for the seismic depth conversion with the uncertainty analysis of the depth of the reflecting horizons. Despite the salt layer in the studied structure this method is able to precisely recognize the seismic velocities of the sub-salt structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop T., Bude K., Cutler E., Langan R., Love P., Resinick J., Shuey R., Spindler D. and Wyld H., 1985. Tomographic determination of velocity and depth in laterally varying media. Geophysics, 50, 903–923.

    Article  Google Scholar 

  • Boehm G., Carcione J.M. and Vesnaver A., 1996. Reflection tomography versus stacking velocity analysis. J. Appl. Geophys., 35, 1–13.

    Article  Google Scholar 

  • Carrion P., 1991, Dual tomography for imaging complex structures, Geophysics, 56, 1395–1404.

    Article  Google Scholar 

  • Carrion P., Böhm G., Marchetti A., Pettenari F. and Vesnaver A., 1993. Reconstruction of lateral gradients from reflection tomography. J. Seism. Explor., 2, 55–67.

    Google Scholar 

  • Červený V. and Pšenčík I., 1984. SEIS83 - Numerical modeling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In: Engdahl E.R. (Ed.), Documentation of Earthquake Algorithms. Report SE-35. World Data Center A for Solid Earth Geophysics, Boulder, CO, 36–40.

    Google Scholar 

  • Červený V., 1987, Ray tracing algorithms in three-dimensional laterally varying layered structures, In: Nolet G. (Ed.), Seismic Tomography - with Applications in Global Seismology and Exploration Geophysics. Springer, Dordrecht, The Netherlands, 99–133.

    Google Scholar 

  • Diogo L.A., Diagon F.M.M. and Prado E.L., 2004. Bedrock imaging using post-critical shallow seismic reflection data. J. Appl. Geophys., 57, 1–9.

    Article  Google Scholar 

  • Dix C.H., 1955. Seismic velocities from surface measurements. Geophysics, 20, 68–86.

    Article  Google Scholar 

  • Grad M., Jensen S.L., Keller G.R., Guterch A., Thybo H., Janik T., Tiira T., Yliniemi J., Luosto U., Motuza G., Nasedkin V., Czuba W., Gaczyński E., Środa P., Miller K.C., Wilde-Piórko M., Komminaho K., Jacyna J. and Korabliova L., 2003. Crustal structure of the Trans-European suture zone region along POLONAISE’97 seismic profile P4. J. Geophys. Res., 108(B11), 2541.

    Article  Google Scholar 

  • Hobro J.W.D., 1999. Three-Dimensional Tomographic Inversion of Combined Reflection and Refraction Seismic Travel-Time Data. Ph.D. Thesis. Department of Earth Sciences, University of Cambridge, Cambridge, U.K.

    Google Scholar 

  • Hole J.A., 1992. Nonlinear high-resolution three-dimensional seismic travel time tomography. J. Geophys. Res., 97(B5), 6553–6562.

    Article  Google Scholar 

  • Majdański M., Grad M., Guterch A. and SUDETES 2003 Working Group, 2006. 2-D seismic tomographic and ray tracing modelling of the crustal structure across the Sudetes Mountains basing on SUDETES 2003 experiment data. Tectonophysics, 413, 249-269.

  • Malinowski M., Środa P., Grad M., Guterch A. and CELEBRATION 2000 Wokring Group, 2009. Testing robust inversion strategies for three-dimensional Moho topography based on CELEBRATION 2000 data. Geophys. J. Int., 179, 1093-1104.

  • Phillips W.S. and Fehler M.C., 1991. Traveltime tomography: A comparison of popular methods. Geophiscs, 56, 1639–1649.

    Article  Google Scholar 

  • Rawlinson N., Houseman G.A. and Collins C.D.N., 2001. Inversion of seismic refraction and wideangle reflection traveltimes for three-dimensional layered crustal structure. Geophys. J. Int., 145, 381–400.

    Article  Google Scholar 

  • Tarantola A., 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, Amsterdam, The Netehrlands.

    Google Scholar 

  • Vasco D.W., Peterson J.E. and Majer E.L., 1996. Nonuniqueness in traveltime tomography: Ensemble inference and cluster analysis. Geophysics, 61, 1209–1227.

    Article  Google Scholar 

  • Vesnaver A.L., 1996. The contribution of reflected, refracted and transmitted waves to seismic tomography: a tutorial. First Break, 14, 159–168.

    Article  Google Scholar 

  • Vesnaver A.L., Gohm G., Madrussani G., Petersen S.A. and Rossi G., 1999. Tomographic imaging by reflected and refracted arrivals at the North Sea. Geophysics, 64, 1952–1862.

    Article  Google Scholar 

  • Yilmaz O., 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists, Tulsa, OK.

    Google Scholar 

  • Zelt C.A., 1994. ZPLOT - An Interactive Plotting and Picking Program for Seismic Data. Bullard Lab., University of Cambridge, Cambridge, U.K.

    Google Scholar 

  • Zelt C.A., 1999. Modelling strategies and model assessment for wide-angle seismic traveltime data. Geophys. J. Int., 139, 183–204.

    Article  Google Scholar 

  • Zelt C.A. and Smith R.B., 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int., 108, 16–34.

    Article  Google Scholar 

  • Zelt C.A. and Barton P.J., 1998. 3D seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin. J. Geophys. Res., 103, 7187–7210.

    Article  Google Scholar 

  • Zhou H., 1993. Traveltime tomography with a spatial-coherency filter. Geophysics, 58, 720–726.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Majdański.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majdański, M., Trzeciak, M., Gaczyński, E. et al. Seismic velocity estimation from post-critical wide-angle reflections in layered structures. Stud Geophys Geod 60, 565–582 (2016). https://doi.org/10.1007/s11200-015-1268-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-1268-0

Keywords

Navigation