Skip to main content
Log in

Field tests of L1 phase centre variation models of surveying-grade GPS antennas

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

GNSS antenna electrical phase center variability is a source of errors in precise geodetic measurements, particularly in reference frame maintenance, satellite precise levelling, deformation monitoring, the establishment of geodetic control networks, geodynamic research, etc. It has a considerable influence on the precision and accuracy of the resulting coordinates. Previous research shows that changing the antenna on the monitored point often results in a considerable bias in the derived height coordinate component. In theory, if electrical phase center is sufficiently modeled, antenna changes should have negligible effect on coordinates. We present the analysis of the influence of the GPS antenna models on the resulting marker position. Numerical tests are based on field measurements. The GPS data collected at the test baseline were processed using Bernese GPS Software Version 5.0. The research shows that the IGS and NGS phase center variation models for some types of the surveying (rover) antennas are still imperfect and are contaminated by constant errors, which may exceed even ± 5 mm for horizontal coordinates components and ± 25 mm for vertical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogusz J., Kłos A., Grzempowski P. and Kontny B., 2013. Modelling velocity field in regular grid on the area of Poland on the basis of the velocities of European permanent stations. Pure Appl. Geophys., 171, 808–833.

    Google Scholar 

  • Dach R., Hugentobler U., Fridez P. and Meindl M., 2007. Bernese GPS Software Version 5.0. Stämpfli Publications AG, Bern, Switzerland.

    Google Scholar 

  • Dilssner F., Seeber G., Wübbena G. and Schmitz M., 2008. Impact of near-field effects on the GNSS position solution. In: Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008). The Institute of Navigation, Manassas, VA, 612–624.

    Google Scholar 

  • Dow J.M., Neilan R.E. and Rizos C., 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy, 83, 191–198.

    Article  Google Scholar 

  • Elósegui P., Davis J.L., Jaldehag R.T.K., Johansson J.M., Niell A.E. and Shapiro I.I., 1995. Geodesy using the global positioning system: the effects of signal scattering on estimates of site position. J. Geophys. Res., 100(B6), 9921–9934.

    Article  Google Scholar 

  • Görres B., Campbell J., Siemes M. and Becker M., 2004. New anechoic chamber results and comparison with field and robot techniques. Presented at IGS Workshop, Bern, Switzerland, 1–5 March 2004 (http://igscb.jpl.nasa.gov/igscb/resource/pubs/04_rtberne/cdrom/Session10/10_1_Goerres.pdf).

    Google Scholar 

  • Görres B., Campbell J., Becker M. and Siemes M., 2006. Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Solut., 10, 136–145.

    Article  Google Scholar 

  • Hatanaka Y., Sawada M., Horita A., Kusaka M., Johnson J.M. and Rocken C., 2001. Calibration of antenna-radome and monument-multipath effect of GEONET-Part 2: Evaluation of the phase map by GEONET data. Earth Planets Space, 53, 23–30.

    Article  Google Scholar 

  • Mader G., 1999. GPS Antenna calibration at the National Geodetic Survey. GPS Solut., 3(1), 50–58.

    Article  Google Scholar 

  • Mader G., 2001. A comparison of Absolute and Relative GPS Antenna Calibrations. GPS Solut., 4, 37–40.

    Article  Google Scholar 

  • Rothacher M. and Mader G., 2002. Receiver and satellite antenna phase center offsets and variations. In: Tetreault P., Neilan R. and Gowey K. (Eds), Towards Real-Time Network, Data and Analysis. International GNSS Service, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 141–152 (http://igscb.jpl.nasa.gov/igscb/resource/pubs/02_ott/front_matter.pdf).

    Google Scholar 

  • Schenk V., Schenková Z., Bosy J. and Kontny B., 2010. Reliability of GPS data for geodynamic studies case study: Sudeten area, The Bohemian Massif. Acta Geodyn. Geomater., 7, 113–128.

    Google Scholar 

  • Schmid R., Mader G. and Herring T., 2004. From relative to absolute antenna phase center corrections. In: Meindl M. (Ed.), Celebrating a Decade of the Interntional GPS Service. Astronomical Institute, University of Berne, Berne, Switzerland (http://igscb.jpl.nasa.gov/igscb/resource/pubs/04_rtberne/cdrom/Session10/10_0_Mader.pdf).

    Google Scholar 

  • Schmid R., Rothacher M., Thaller D. and Steigenberger P., 2005. Absolute phase center corrections of satellite and receiver antennas. GPS Solut., 9, 283–293.

    Article  Google Scholar 

  • Schmitz M., Wübbena G. and Boettcher G., 2002. Tests of phase center variations of various GPS antennas and some results, GPS Solut., 6 18–27.

    Article  Google Scholar 

  • Steigenberger P., Rothacher M., Schmid R., Rülke A., Fritsche M., Dietrich R. and Tesmer V., 2009. Effects of different antenna phase center models on GPS-derived reference frames. In: Drewes H. (Ed.), Geodetic Reference Frames. International Association of Geodesy Symposia, 134, Springer-Verlag, Heidelberg, Germany, 83–88.

    Article  Google Scholar 

  • Stepniak K., Baryla R., Wielgosz P. and Kurpinski G., 2013. Optimal data processing strategy in precise GPS leveling networks. atActa Geodyn. Geomater., 10, 443–452.

    Article  Google Scholar 

  • Wielgosz P., Paziewski J. and Baryla R., 2011. On constraining zenith tropospheric delays in processing of local GPS networks with Bernese Software. Surv. Rev., 43, 472–483.

    Article  Google Scholar 

  • Wübbena G., Schmitz M., Boettcher G. and Schumann C., 2006a. Absolute GNSS antenna calibration with a robot: repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern. (http://www.geopp.de/media/docs/pdf/gppigs06_pabs_g.pdf).

    Google Scholar 

  • Wübbena G., Schmitz M., Boettcher G., 2006b. Near-field effects on GNSS sites: analysis using absolute robot calibrations and procedures to determine corrections. In: Springer T., Gendt G. and Dow J.M. (Eds),The International GNSSService (IGS): “Perspectives and Visions for 2010 and beyond” (ftp://igs.org/pub/resource/pubs/06_darmstadt/IGS WS 202006Papers PDF/10_Wubbena_gppigs06_pnf_i.pdf).

    Google Scholar 

  • Zeimetz P. and Kuhlmann H., 2011. Validation of the laboratory calibration of geodetic antennas based on GPS measurements. International Federation of Surveyors, Article of the Month- February 2011 (https://www.fig.net/pub/monthly_articles/february_2011/february_201_zeimetz_kuhlmann.pdf).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Stępniak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stępniak, K., Wielgosz, P. & Baryła, R. Field tests of L1 phase centre variation models of surveying-grade GPS antennas. Stud Geophys Geod 59, 394–408 (2015). https://doi.org/10.1007/s11200-014-0250-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0250-6

Keywords

Navigation