Skip to main content
Log in

Composite magnetic fabric deciphered using heating treatment

Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

In a number of AMS studies, the presence and deciphering of composite magnetic fabrics is of major importance for a correct interpretation of the data. On the basis of several examples from intrusive rocks (diorites and dolerites) we show that the use of laboratory heatings can help to extract at least one component of the composite magnetic fabrics usually present. The procedure includes comparison of the fabrics measured after stepwise laboratory heating with the fabrics determined by tensor difference and by linear regression analysis.

In the diorite samples, the measured AMS results from the superimposition of different component fabrics and does not correspond exactly to any of these fabrics. In these dykes, isolated magnetic fabric during thermal treatment corresponds to that of the main magnetic mineral (Ti-poor titanomaghemite) and reveals an unknown structure. In volcanic flow or doleritic dykes, a “parasitic” fabric related to late or post-magmatic evolution superimposed to the flow fabric can produce important scattering of the AMS principal directions. Decomposition of magnetic fabric during thermal treatment allows isolation of the flow fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abouzakhm A.G. and Tarling D.H., 1975. Magnetic anisotropy and susceptibility from northwestern Scotland. J. Geol. Soc. (Lond.), 131, 983–994.

    Google Scholar 

  • Bascou J., Camps P. and Dautria J.M., 2005. Magnetic versus crystallographic fabrics in a basaltic flow. J. Volc. Geotherm. Res., 145, 119–135.

    Article  Google Scholar 

  • Borradaile G.J. and Lagroix F., 2000. Thermal enhancement of magnetic fabrics in high grade gneisses. Geophys. Res. Lett., 27, 2413–2416.

    Article  Google Scholar 

  • Carmichael R., 1982. Handbook of Physical Properties of Rocks, Vol. II, Magnetic Properties. CRC Press Inc., Boca Raton, Florida, 256 pp.

    Google Scholar 

  • Derder M.E.M., Henry B., Bayou B., Ouabadi A., Bellon H., Djellit H., Khaldi A., Amenna M., Baziz K., Hemmi A. and Guemmache M.A., 2006. New African Lower Carboniferous paleomagnetic pole from intrusive rocks of the Tin Serririne basin (Southern border of the Hoggar, Algeria). Tectonophysics, 418, 189–203.

    Article  Google Scholar 

  • Djellit H., Bellon H., Ouabadi A., Derder M.E.M., Henry B., Bayou B., Khaldi A., Baziz K. and Merahi M.K., 2006. Age 40K/40Ar, Carbonifère inférieur, du volcanisme basique filonien du synclinal paléozoïque de Tin Sirririne, Sud-Est Hoggar (Algérie). C. R. Geosci., 338, 624–631.

    Article  Google Scholar 

  • Efron B., 1982. The Jackknife, the Bootstrap and other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics (No. 38), SIAM Books, Philadelphia.

    Google Scholar 

  • Efron B. and Tibshirani R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci., I, 54–77.

    Google Scholar 

  • Ellwood B.B., Balsam W., Burkart B., Long G.J. and Buhl M.L., 1986. Anomalous magnetic properties in rocks containing the mineral siderite: paleomagnetic implications. J. Geophys. Res., 91, 12779–12790.

    Google Scholar 

  • Ferré, E.C., 2002. Theoretical models of intermediate and inverse fabrics. Geophys. Res. Lett., 29, 10.1029/2001GL014367.

  • Frost B. and Lindsley D., 1991. Occurrence of iron-titanium oxides in igneous rocks. In: D. Lindsley (Ed.), Oxide Minerals: Petrologic and Magnetic Significance. Reviews in Mineralogy, 25, 433–468.

  • Harrison R.J. and Putnis A., 1996. Magnetic properties of the magnetite-spinel solid solution: Curie temperatures, magnetic susceptibilities, and cation ordering. Am. Miner., 81, 375–384.

    Google Scholar 

  • Harrison R.J. and Putnis, A., 1999. The magnetic properties and crystal chemistry of oxide spinel solid solutions. Surv. Geophys., 19, 461–520.

    Article  Google Scholar 

  • Henry B., 1974. Sur l’anisotropie de susceptibilité magnétique du granite récent de Novate (Italie du Nord). C. R. Acad. Sci. Paris, 278C, 1171–1174.

    Google Scholar 

  • Henry B., 1983. Interprétation quantitative de l’anisotropie de susceptibilité magnétique. Tectonophysics, 91, 165–177.

    Article  Google Scholar 

  • Henry B. and Daly L., 1983. From qualitative to quantitative magnetic anisotropy analysis: the prospect of finite strain calibration. Tectonophysics, 98, 327–336.

    Article  Google Scholar 

  • Henry B., Jordanova D., Jordanova N., Souque C. and Robion P., 2003. Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366, 241–258.

    Article  Google Scholar 

  • Henry B., Jordanova D., Jordanova N. and Le Goff M., 2005. Transformations of magnetic mineralogy in rocks revealed by difference of hysteresis loops measured after stepwise heating: theory and cases study. Geophys. J. Int., 162, 64–78.

    Article  Google Scholar 

  • Hirt A.M. and Gehring A.U., 1991. Thermal alteration of the magnetic mineralogy in ferruginous rocks. J. Geophys. Res., 96, 9947–9953.

    Article  Google Scholar 

  • Jelenska M. and Kadzialko-Hofmokl M., 1990. Dependence of anisotropy of magnetic susceptibility of rocks on temperature. Phys. Earth Planet. Inter., 62, 19–31.

    Article  Google Scholar 

  • Jelínek V., 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63–67.

    Article  Google Scholar 

  • Kraus S, 2005. Magmatic Dyke Systems of the South Shetland Islands Volcanic Arc (West Antarctica): Reflections of the Geodynamic History. PhD Thesis, University of München.

  • Kropáček V., 1976. Changes of magnetic susceptibility and its anisotropy of basalts by oxidation of titanomagnetites. Stud. Geophys. Geod., 20, 178–185.

    Article  Google Scholar 

  • Li X.Z., Dobson J., Chen Z., Chang W.J. and St. Pierre T.G., 1998. Multimodal investigation of thermally induced changes in magnetic fabric and magnetic mineralogy. Geophys. J. Int., 135, 988–998.

    Article  Google Scholar 

  • O’Reilly W., 1984. Rock and Mineral Magnetism. Blackie, London and Glasgow, 220 pp.

    Google Scholar 

  • Pan Y., Zhu R., Banerjee S., Gill J. and Williams Q., 2000. Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation. J. Geophys. Res., 105(B1), 783–794.

    Article  Google Scholar 

  • Peraneau A. and Tarling D.H., 1985. Thermal enhancement of magnetic fabric in Cretaceous sandstones. J. Geol. Soc. (Lond.), 142, 1029–1034.

    Google Scholar 

  • Petrovský E. and Kapička A., 2005. Comments on “The use of field dependence of magnetic susceptibility for monitoring variations in titanomagnetite composition-a case study on basanites from the Vogelsberg 1 996 drillhole, Germany” by de Wall and Nano, Stud. Geophys. Geod., 48, 767–776. Stud. Geophys. Geod., 49, 255–258.

    Article  Google Scholar 

  • Petrovský E. and Kapička A., 2006. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res., 111, B12S27, doi: 10.1029/2006JB004507.

  • Schultz-Krutisch T. and Heller F., 1985. Measurements of magnetic susceptibility anisotropy in Bundsandstein deposits from Southern Germany. J. Geophys., 57, 51–58.

    Google Scholar 

  • Souque C., Robion P. and Frizon de Lamotte D., 2002. Cryptic magnetic fabric of tectonic origin revealed by heating of sedimentary samples from the Corbières (France). Phys. Chem. Earth, 27, 1253–1262.

    Google Scholar 

  • Trincade R.I.F., Mintsa Mi Nguema T. and Bouchez J.L., 2001. Thermally enhanced mimetic fabric of magnetite in a biotite granite. Geophys. Res. Lett., 28, 2687–2690.

    Article  Google Scholar 

  • Urrutia-Fucugauchi J., 1981. Preliminary results on the effects of heating on the magnetic susceptibility anisotropy of rocks. J. Geomagn. Geoelectr., 33, 411–419.

    Google Scholar 

  • Xu T.C., Ye S.J. and Yang F., 1991. A preliminary study of thermally enhanced magnetic fabric in the Tertiary sediments from Qaidam basin, NW China. Stud. Geophys. Geod., 35, 295–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, B., Jordanova, D., Jordanova, N. et al. Composite magnetic fabric deciphered using heating treatment. Stud Geophys Geod 51, 293–314 (2007). https://doi.org/10.1007/s11200-007-0016-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-007-0016-5

Key words

Navigation