Skip to main content

Advertisement

Log in

Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

This study presents the setup, calibration, validation and scenario application of the soil and water assessment tool for two contrasting macro-catchments along the Amazon agricultural frontier in the federal states of Pará and Mato Grosso, Brazil. Calibration and validation of the model are realised for the periods of the most intensive deforestation and agricultural expansion. In order to give consideration to the rapid, however gradual nature of land use change, the model implements an annual land use update combined with a land use dependent soil parameterization of the upper most soil layer. The comparison of these results with the results of a setup with a steady land use distribution shows distinct improvements of the prediction quality. Discharge prediction improves through the application of gradual land use change in the model by 12 % for a 1.8 % deforestation rate per year and 1.2 % for a deforestation rate of 0.7 % per year. Consequently, the validated models are applied to four land use scenarios for the period 2026–2035. Scenario simulation results show effects on the water balance proportional to land use change. Further, the changes in the water balance follow clear seasonal patterns with highest hydrological effects due to land use change during the rainy season in both catchments. Overall, with continuous deforestation, peak discharge increases. Further, the conversion of native vegetation to pasture has the highest impact on the water balance. For example, monthly discharge in the rainy season increases by up to 24 % for a 13 % conversion of Cerrado savannah into pasture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour KC (2007) User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag

    Google Scholar 

  • Abbaspour KC, Johnson CA, van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal 3(4):1340. doi:10.2136/vzj2004.1340

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M et al (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome 300(9)

  • Amoozegar A, Warrick AW (1986) Hydraulic conductivity of saturated soils: field methods. Methods Soil Anal Part 1 Phys Mineral Methods. doi:10.2136/sssabookser5.1.2ed.c29

    Google Scholar 

  • Arima EY, Richards P, Walker R, Caldas MM (2011) Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ Res Lett 6(2):24010. doi:10.1088/1748-9326/6/2/024010

    Article  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, Van Griensven A, Van Liew MW et al (2012) SWAT: model use, calibration, and validation. Trans ASABE 55(4):1491–1508. doi:10.13031/2013.42256

    Article  Google Scholar 

  • Barona E, Ramankutty N, Hyman G, Coomes OT (2010) The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett 5(2):24002. doi:10.1088/1748-9326/5/2/024002

    Article  Google Scholar 

  • Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R, Eva HD, Sano E, Achard F (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127. doi:10.1016/j.apgeog.2015.01.017

    Article  Google Scholar 

  • Beven K (2010) Environmental modelling: an uncertain future?. CRC Press, Routledge

    Google Scholar 

  • Bosch JM, Hawlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23. doi:10.1016/0022-1694(82)90117-2

  • Böhner J, Dietrich H, Fraedrich K, Kawohl T, Kilian M, Lucarini V, Lunkeit F (2013) Development and implementation of a hierarchical model chain for modelling regional climate variability and climate change over southern Amazonia. Interdisciplinary analysis and modeling of carbon-optimized land management strategies for Southern Amazonia, Universitätsdrucke Göttingen, 119–128

  • Maciocheck B (2013) Change detection im Wassereinzugsgebiet Novo Progresso (Pará, Brasilien). Göttingen, Germany

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104(1):185–228. doi:10.1016/j.agee.2004.01.015

    Article  Google Scholar 

  • Chiang L, Chaubey I, Gitau MW, Arnold JG (2010) Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model. Trans ASABE 53(5):1569–1584. doi:10.13031/2013.34901

    Article  CAS  Google Scholar 

  • Christoffersen BO, Restrepo-Coupe N, Arain MA, Baker IT, Cestaro BP, Ciais P, Fisher JB, Galbraith D, Guan X, Gulden L et al (2014) Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agric For Meteorol 191:33–50. doi:10.1016/j.agrformet.2014.02.008

    Article  Google Scholar 

  • Cleveland WS (1981) LOWESS: a program for smoothing scatterplots by robust locally weighted regression. Am Stat. doi:10.2307/2683591

    Google Scholar 

  • Climate-Data.org (2015) Climate data for cities worldwide. http://en.climate-data.org/. Accessed 27 May 2015

  • Coe MT, Costa MH, Soares-Filho BS (2009) The influence of historical and potential future deforestation on the stream flow of the Amazon River—land surface processes and atmospheric feedbacks. J Hydrol 369(1–2):165–174. doi:10.1016/j.jhydrol.2009.02.043

    Article  Google Scholar 

  • Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J Hydrol 283(1–4):206–217. doi:10.1016/S0022-1694(03)00267-1

    Article  Google Scholar 

  • D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int J Climatol 27(5):633–647. doi:10.1002/joc.1475

    Article  Google Scholar 

  • Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MM, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481(7381):321–328. doi:10.1038/nature10717

    Article  CAS  Google Scholar 

  • de Lima WP, Zakia MB, Libardi PL, de Souza Filho AP et al (1990) Comparative evapotranspiration of eucalyptus, pine and natural “cerrado” vegetation measure by the soil water balance method. Ipef International, Piracicaba

  • De Paiva RCD, Buarque DC, Collischonn W, Bonnet M-P, Frappart F, Calmant S, Bulhões Mendes CA (2013) Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res 49(3):1226–1243. doi:10.1002/wrcr.20067

    Article  Google Scholar 

  • De Roo A, Odijk M, Schmuck G, Koster E, Lucieer A (2001) Assessing the effects of land use changes on floods in the Meuse and Oder catchment. Phys Chem Earth Part B Hydrol Oceans Atmos 26(7):593–599. doi:10.1016/S1464-1909(01)00054-5

    Article  Google Scholar 

  • DeFries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18(11):2183–2186. doi:10.1002/hyp.5584

    Article  Google Scholar 

  • Drewry JJ, Cameron KC, Buchan GD (2008) Pasture yield and soil physical property responses to soil compaction from treading and grazing—a review. Soil Res 46(3):237–256. doi:10.1071/SR07125

    Article  Google Scholar 

  • ESALQ (2015) Escola Superior de Agricultura “Luiz de Queiroz.” http://www.esalq.usp.br/gerd/. Accessed 1 June 2015

  • Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19(3):680–688. doi:10.1111/j.1523-1739.2005.00697.x

    Article  Google Scholar 

  • Fearnside PM (2007) Brazil’s Cuiabá-Santarém (BR-163) highway: the environmental cost of paving a soybean corridor through the Amazon. Environ Manag 39(5):601–614. doi:10.1007/s00267-006-0149-2

    Article  Google Scholar 

  • Fuka DR, Walter MT, MacAlister C, Degaetano AT, Steenhuis TS, Easton ZM (2014) Using the climate forecast system reanalysis as weather input data for watershed models. Hydrol Process 28(22):5613–5623. doi:10.1002/hyp.10073

    Article  Google Scholar 

  • Fukunaga DC, Cecílio RA, Zanetti SS, Oliveira LT, Caiado MAC (2015) Application of the SWAT hydrologic model to a tropical watershed at Brazil. CATENA 125:206–213. doi:10.1016/j.catena.2014.10.032

    Article  Google Scholar 

  • Galford GL, Melillo J, Mustard JF, Cerri CEP, Cerri CC (2010) The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions. Earth Interact 14(15):1–24. doi:10.1175/2010EI327.1

    Article  Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) Soil and water assessment tool: historical development, applications, and future research directions, The Center for Agricultural and Rural Development Iowa State University Working Paper 07-WP 443

  • George C (2014) Simulation of hydrologic impacts of land use land cover changes in a humid tropical river basin

  • Giambelluca TW, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Hoffmann WA, Franco AC, Buchert MP (2009) Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agric For Meteorol 149(8):1365–1376. doi:10.1016/j.agrformet.2009.03.006

    Article  Google Scholar 

  • Global Weather Data (2015) http://globalweather.tamu.edu/. Accessed 31 May 2015

  • Granier A, Loustau D, Bréda N (2000) A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann For Sci 57(8):11. doi:10.1051/forest:2000158

    Article  Google Scholar 

  • Guse B, Pfannerstill M, Fohrer N (2015) Dynamic modelling of land use change impacts on nitrate loads in rivers. Environ Process 2(4):575–592. doi:10.1007/s40710-015-0099-x

    Article  CAS  Google Scholar 

  • Guzha A, Nobrega R, Kovacs K, Amorim RSS, Gerold G (2013a) Quantifying impacts of agro-industrial expansion in Mato Grosso, Brazil, on watershed hydrology using the soil and water assessment tool (SWAT) model. Paper presented at the conference: 20th International Congress on Modelling and Simulation. Adelaide, Australia. doi:10.5194/hessd-12-9915-2015

  • Guzha A, Nobrega R, Santos C, Gerold G (2013b) Investigating discharge and rainfall variability in an Amazonian watershed: do any trends exist? IAHS-AISH publication 346–351

  • Hari Krishna B, Mani A, Uma Devi M, Ramulu V (2014) Simulation of impact of change in landuse on water yield of upper Manair catchment. Int J Innov Res Dev 3(1):592–600. ISSN: 2278-0211

    Google Scholar 

  • Hayhoe SJ, Neill C, Porder S, Mchorney R, Lefebvre P, Coe MT, Elsenbeer H, Krusche AV (2011) Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Glob Change Biol 17(5):1821–1833. doi:10.1111/j.1365-2486.2011.02392.x

    Article  Google Scholar 

  • Hodnett MG, da Silva LP, da Rocha HR, Cruz Senna R (1995) Seasonal soil water storage changes beneath central Amazonian rainforest and pasture. J Hydrol 170(1–4):233–254. doi:10.1016/0022-1694(94)02672-X

    Article  Google Scholar 

  • Hunke P, Mueller EN, Schröder B, Zeilhofer P (2015a) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8(6):1154–1180. doi:10.1002/eco.1573

    Article  Google Scholar 

  • Hunke P, Roller R, Zeilhofer P, Schröder B, Mueller EN (2015b) Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reg 4:31–43. doi:10.1016/j.geodrs.2014.12.001

    Article  Google Scholar 

  • Jacomine PKT (2009) A nova classificação brasileira de solos. Anais da Academia Pernambucana de Ciência Agronômica 5:161–179. ISSN: 2448-2811

    Google Scholar 

  • Kergoat L (1998) A model for hydrological equilibrium of leaf area index on a global scale. J Hydrol 212–213:268–286. doi:10.1016/S0022-1694(98)00211-X

    Article  Google Scholar 

  • Koch FJ, van Griensven A, Uhlenbrook S, Tekleab S, Teferi E (2012) The Effects of land use change on hydrological responses in the choke mountain range (Ethiopia)-a new approach addressing land use dynamics in the model SWAT. In: Proceedings of 2012 international congress on environmental modeling and software managing resources of a limited planet, sixth biennial meeting, Leipzig, Germany, pp 1–5

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269. doi:10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  • Lathuillière MJ, Johnson MS, Donner SD (2012) Water use by terrestrial ecosystems: temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. Environ Res Lett 7(2):24024. doi:10.1088/1748-9326/7/2/024024

    Article  Google Scholar 

  • Lima LS, Coe MT, Filho BSS, Cuadra SV, Dias LCP, Costa MH, Lima LS, Rodrigues HO (2013) Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services. Landsc Ecol 29(2):261–274. doi:10.1007/s10980-013-9962-1

    Article  Google Scholar 

  • Macedo MN, DeFries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc Natl Acad Sci 109(4):1341–1346. doi:10.1073/pnas.1111374109

    Article  CAS  Google Scholar 

  • Macioscheck B (2013) Land use classification upper Jamanxim catchment. ESRI ArcGIS shape files, Göttingen

    Google Scholar 

  • McGrath DA, Smith CK, Gholz HL, de Assis Oliveira F (2001) Effects of land-use change on soil nutrient dynamics in Amazônia. Ecosystems 4(7):625–645. doi:10.1007/s10021-001-0033-0

    Article  CAS  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33(3):491–505. doi:10.1111/j.1365-2699.2005.01424.x

    Article  Google Scholar 

  • Mishra SK, Singh VP (2003) Soil conservation service curve number (SCS-CN) methodology. Springer, Berlin

    Book  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. doi:10.13031/2013.23153

    Article  Google Scholar 

  • Nandakumar N, Mein RG (1997) Uncertainty in rainfall—runoff model simulations and the implications for predicting the hydrologic effects of land-use change. J Hydrol 192(1–4):211–232. doi:10.1016/S0022-1694(96)03106-X

    Article  Google Scholar 

  • Negri AJ, Adler RF, Xu L, Surratt J (2004) The impact of Amazonian deforestation on dry season rainfall. J Clim 17(6):1306–1319. doi:10.1175/1520-0442(2004)017<1306:TIOADO>2.0.CO;2

    Article  Google Scholar 

  • Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Clim 4(10):957–988. doi:10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2

    Article  Google Scholar 

  • Nobrega RLB, Guzha AC, Torres GN, Kovacs K, Lamparter G, Amorim RSS, Couto E, Gerold G (2015) Identifying hydrological responses of micro-catchments under contrasting land use in the Brazilian Cerrado. Hydrol Earth Syst Sci. doi:10.5194/hessd-12-9915-2015

    Google Scholar 

  • Oliveira PS (2014) Balanço hídrico e erosão do solo no Cerrado Brasileiro. Sao Paulo, School of Engineering, Department of Hydraulics and Sanitary Engineering

  • Oliveira PTS, Nearing MA, Moran MS, Goodrich DC, Wendland E, Gupta HV (2014) Trends in water balance components across the Brazilian Cerrado. Water Resour Res 50(9):7100–7114. doi:10.1002/2013WR015202

    Article  Google Scholar 

  • Pai N, Saraswat D (2011) SWAT2009_LUC: a tool to activate the land use change module in SWAT 2009. Trans ASABE 54(5):1649–1658. doi:10.13031/2013.39854

    Article  Google Scholar 

  • Pongratz J, Bounoua L, DeFries RS, Morton DC, Anderson LO, Mauser W, Klink CA (2006) The impact of land cover change on surface energy and water balance in Mato Grosso, Brazil. Earth Interact 10(19):1–17. doi:10.1175/EI176.1

    Article  Google Scholar 

  • Price K (2011) Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. Prog Phys Geogr 35(4):465–492. doi:10.1177/0309133311402714

    Article  Google Scholar 

  • Rodrigues ASL, Ewers RM, Parry L, Souza C, Veríssimo A, Balmford A (2009) Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324(5933):1435–1437. doi:10.1126/science.1174002

    Article  CAS  Google Scholar 

  • Schaldach R, Koch J (2009) Conceptual design and implementation of a model for the integrated simulation of large-scale land-use systems. In: Athanasiadis DIN, Rizzoli PAE, Mitkas PA, Gómez PD-IJM (eds) Information technologies in environmental engineering. Springer, Berlin, 425–438. doi:10.1007/978-3-540-88351-7_32

  • Schaldach R, Alcamo J, Koch J, Kölking C, Lapola DM, Schüngel J, Priess JA (2011) An integrated approach to modelling land-use change on continental and global scales. Environ Model Softw 26(8):1041–1051. doi:10.1016/j.envsoft.2011.02.013

    Article  Google Scholar 

  • Scheffler R, Neill C, Krusche AV, Elsenbeer H (2011) Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric Ecosyst Environ 144(1):281–289. doi:10.1016/j.agee.2011.08.016

    Article  Google Scholar 

  • Schilling KE, Jha MK, Zhang Y-K, Gassman PW, Wolter CF (2008) Impact of land use and land cover change on the water balance of a large agricultural watershed: historical effects and future directions. Water Resour Res 44(7):09. doi:10.1029/2007WR006644

    Article  Google Scholar 

  • Schlicht S (2013) Dynamics of deforestation and agricultural production in the upper Rio das Mortes watershed in Mato Grosso state (Brazil). M.Sc. thesis, Göttingen, Germany, University of Göttingen

  • Schneider R (1963) Groundwater Proviceces Brazil. Preared in coopertaion with the Government of Brazil and the United Staes Operation Mission to Brazil. Washington, USA

  • Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável (2015) Zoneamento Ecológico Econômico. http://www.zee.mg.gov.br/. Accessed 31 May 2015

  • Sellers PJ, Shuttleworth WJ, Dorman JL, Dalcher A, Roberts JM (1989) Calibrating the simple biosphere model for Amazonian tropical forest using field and remote sensing data. Part I: average calibration with field data. J Appl Meteorol 28(8):727–759. doi:10.1175/1520-0450(1989)028<0727:CTSBMF>2.0.CO;2

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: model formulation. J Clim 9(4):676–705. doi:10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2

    Article  Google Scholar 

  • Strauch M, Volk M (2013) SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecol Model 269:98–112. doi:10.1016/j.ecolmodel.2013.08.013

    Article  Google Scholar 

  • University of South Alabama (2016) Brazilian Geological Map. http://geology.about.com/library/bl/maps/brazilmap.gif. Accessed 11 Jan 2016

  • Wagner PD, Bhallamudi SM, Narasimhan B, Kantakumar LN, Sudheer KP, Kumar S, Schneider K, Fiener P (2016) Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Sci Total Environ 539:153–164. doi:10.1016/j.scitotenv.2015.08.148

    Article  CAS  Google Scholar 

  • Wertz-Kanounnikoff SA (2005) Forest policy enforcement at the Amazon frontier: the case of Mato Grosso, Brazil. Dissertation

Download references

Acknowledgments

This study was carried out in the framework of the integrated project CarBioCial funded by the German Ministry of Education and Research (BMBF) under the Grant Number 01LL0902F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Lamparter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamparter, G., Nobrega, R.L.B., Kovacs, K. et al. Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Reg Environ Change 18, 91–103 (2018). https://doi.org/10.1007/s10113-016-1015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1015-2

Keywords

Navigation