Skip to main content

Advertisement

Log in

Optimal allocations of agricultural intensity reveal win-no loss solutions for food production and biodiversity

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Reconciling biodiversity conservation and food production may require the fine-tuning of both agricultural intensity and its spatial allocation. Here, we explored whether the optimization of allocation of intensity could improve food production and biodiversity outcomes. We developed a spatially explicit, multi-criteria optimization model for agricultural intensity allocation at the scale of France and at the resolution of small agricultural regions (SARs) with a mean area of 669.6 km2. Three thousand allocations were randomly simulated and then optimized under three scenarios: intensification, extensification, and reallocation. Optimization was based on food production and biodiversity outcomes using several metrics, such as habitat specialization and trophic level, that reflect the composition of farmland bird communities. The optimization was based on derived statistical relationships between intensity and the production and biodiversity metrics at the SAR scale using national agricultural statistics and bird census data. Simulations showed that optimal allocations modulated the trade-off among criteria and led to increased efficiency, with optimal extensification increasing biodiversity and minimizing production losses. Furthermore, we revealed “win-no loss” solutions. For example, optimal intensification increased production with almost no biodiversity loss and optimal reallocation benefited biodiversity with almost no cost to production. A variety of agricultural intensity levels were necessary to maintain a diversity of farmland bird communities at the national scale. Although we demonstrate that optimal allocation of intensity can be a powerful means of reconciling diverse criteria at the national scale, its implementation will require new mechanisms for spatially targeted and coordinated policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Change Biol 18:881–890. doi:10.1111/j.1365-2486.2011.02552.x

    Article  Google Scholar 

  • Batary P, Baldi A, Sárospataki M, Kohler F, Verhulst J, Knop E, Herzog F, Kleijn D (2010) Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agric Ecosyst Environ 136:35–39. doi:10.1016/j.agee.2009.11.004

    Article  Google Scholar 

  • Benton T, Vickery J, Wilson JD (2002) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi:10.1016/S0169-5347(03)00011-9

    Article  Google Scholar 

  • Bignal EM, McCracken DI (1996) Low-intensity farming systems in the conservation of the countryside. J Appl Ecol 33:413. doi:10.2307/2404973

    Article  Google Scholar 

  • Bleken MA, Steinshamn HV, Hansen S (2005) High nitrogen costs of dairy production in Europe: worsened by intensification. Ambio 34:598–606

    Article  Google Scholar 

  • Brotons L, Wolff A, Paulus G, Martin JL (2005) Effect of adjacent agricultural habitat on the distribution of passerines in natural grasslands. Biol Conserv 124:407–414. doi:10.1016/j.biocon.2005.01.046

    Article  Google Scholar 

  • Butle SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315:381–384. doi:10.1126/science.1136607

    Article  Google Scholar 

  • Butler S, Boccaccio L, Gregory R, Vorisek P, Norris K (2010) Quantifying the impact of land-use change to European farmland bird populations. Agric Ecosyst Environ 137:348–357. doi:10.1016/j.agee.2010.03.005

    Article  Google Scholar 

  • Chiron F, Princé K, Paracchini ML, Bulgheroni C, Jiguet F (2013) Forecasting the potential impacts of CAP-associated land use changes on farmland birds at the national level. Agric Ecosyst Environ 176:17–23. doi:10.1016/j.agee.2013.05.018

    Article  Google Scholar 

  • Dalgaard T, Halberg N, Kristensen IS (1998) Can organic farming help to reduce N-losses ? Experiences from Denmark. Nutr Cycl Agroecosys 52:277–287. doi:10.1023/A:1009790722044

    Article  Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II IEEE. Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514. doi:10.1111/j.0030-1299.2008.16215.x

    Article  Google Scholar 

  • Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M, Lindström AK, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, De Vries MW, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change 2:121–124. doi:10.1038/nclimate1347

    Article  Google Scholar 

  • Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43:209–218. doi:10.1111/j.1365-2664.2006.01146.x

    Article  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B Biol Sci 268:25–29. doi:10.1098/rspb.2000.1325

    Article  Google Scholar 

  • Doxa A, Bas Y, Paracchini ML, Pointereau P, Terres JM, Jiguet F (2010) Low-intensity agriculture increases farmland bird abundances in France. J Appl Ecol 47:1348–1356. doi:10.1111/j.1365-2664.2010.01869.x

    Article  Google Scholar 

  • Drechsler M, Wätzold F, Johst K, Bergmann H, Settele J (2007) A model-based approach for designing cost-effective compensation payments for conservation of endangered species in real landscapes. Biol Conserv 140:174–186. doi:10.1016/j.biocon.2007.08.013

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175. doi:10.2307/3544901

    Article  Google Scholar 

  • European Commission, Ministère de l’agriculture et de la pêche (2008) Evaluation ex post du plan de développement rural national - questions transversales et synthèse générale. Marché CNASEA no. 19–07. Rapport d’évaluation

  • Ewert F, Rounsevell M, Reginster I, Metzger M, Leemans R (2005) Future scenarios of European agricultural land use. Agric Ecosyst Environ 107:101–116. doi:10.1016/j.agee.2004.12.003

    Article  Google Scholar 

  • Feehan J, Gillmor D, Culleton N (2005) Effects of an agri-environment scheme on farmland biodiversity in Ireland. Agric Ecosyst Environ 107:275–286. doi:10.1016/j.agee.2004.10.024

    Article  Google Scholar 

  • Gabriel D, Carver SJ, Durham H, Kunin WE, Palmer RC, Sait SM, Stagl S, Benton TG (2009) The spatial aggregation of organic farming in England and its underlying environmental correlates. J Appl Ecol 46:323–333. doi:10.1111/j.1365-2664.2009.01624.x

    Article  Google Scholar 

  • Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869. doi:10.1111/j.1461-0248.2010.01481.x

    Article  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555. doi:10.1126/science.1106049

    Article  CAS  Google Scholar 

  • Gregory R, van Strien A, Vorisek P, Gmelig Meyling AW, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Proc R Soc Lond B Biol Sci 360:269–288. doi:10.1098/rstb.2004.1602

    Article  Google Scholar 

  • Gregory RD, Willis SG, Jiguet F, Vorísek P, Klvanová A, van Strien A, Huntley B, Collingham YC, Couvet D, Green RE (2009) An indicator of the impact of climatic change on European bird populations. PLoS ONE 4:e4678. doi:10.1371/journal.pone.0004678

    Article  Google Scholar 

  • Groot JCJ, Jellema A, Rossing WAH (2010) Designing a hedgerow network in a multifunctional agricultural landscape: balancing trade-offs among ecological quality, landscape character and implementation costs. Eur J Agron 32:112–119. doi:10.1016/j.eja.2009.07.002

    Article  Google Scholar 

  • Jiguet F, Devictor V, Julliard R, Couvet D (2011) French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecol 44:58–66. doi:10.1016/j.actao.2011.05.003

    Article  Google Scholar 

  • Julliard R, Clavel J, Devictor V, Jiguet F, Couvet D (2006) Spatial segregation of specialists and generalists in bird communities. Ecol Lett 9:1237–1244. doi:10.1111/j.1461-0248.2006.00977.x

    Article  Google Scholar 

  • Klatzmann J (1955) La localisation des cultures et des productions animales en France. INSEE, Paris

    Google Scholar 

  • Kleijn D, Berendse F, Smit R, Gilissen N (2001) Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature 413:723–725. doi:10.1038/35099540

    Article  CAS  Google Scholar 

  • Kleijn D, Baquero RA, Clough Y, Diaz M, De Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshal, EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254. doi:10.1111/j.1461-0248.2005.00869.x

    Article  CAS  Google Scholar 

  • Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969. doi:10.1111/j.1365-2664.2003.00868.x

    Google Scholar 

  • Kleijn D, Kohler F, Baldi A (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc Lond B Biol Sci 276:903–909. doi:10.1098/rspb.2008.1509

    Article  CAS  Google Scholar 

  • Kohler F, Verhulst J, Knop E, Herzog F, Kleijn D (2007) Indirect effects of grassland extensification schemes on pollinators in two contrasting European countries. Aquat Ecol 5:3–8. doi:10.1016/j.biocon.2006.10.037

    Google Scholar 

  • Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612. doi:10.1038/23127

    Article  CAS  Google Scholar 

  • Latacz-Lohmann U, Hodge I (2003) European agri-environmental policy for the 21st century. Aust J Agric Econ 47:123–139. doi:10.1111/1467-8489.00206

    Article  Google Scholar 

  • Maracchi G, Sirotenko O, Bindi M (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim Change 70:117–135. doi:10.1007/1-4020-4166-7_6

    Article  CAS  Google Scholar 

  • Matzdorf B, Kaiser T, Rohner MS (2008) Developing biodiversity indicator to design efficient agri-environmental schemes for extensively used grassland. Ecol Indic 8:256–269. doi:10.1016/j.ecolind.2007.02.002

    Article  Google Scholar 

  • Merckx T, Pereira HM (2015) Reshaping agri-environmental subsidies: from marginal farming to large-scale rewilding. Basic Appl Ecol 16:95–103. doi:10.1016/j.baae.2014.12.003

    Article  Google Scholar 

  • Netting RM (1993) Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture. Am Ethnol 24:494–497. doi:10.2307/525329

    Google Scholar 

  • ODR (2011) French Observatory of Rural Development agricultural data platform. https://esrcarto.supagro.inra.fr/. Accessed Jan 2011

  • Osterburg B, States F, State F (2001) Agri-environmental programs and the use of soil conservation measures in Germany In: Sustaining the global farm. Selected papers from the 10th international soil organization meeting at Purdue University. West Lafayette, USA, 112–118

  • Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, Scott AV (2014) EU agricultural reform fails on biodiversity. Science 344:1090–1092. doi:10.1126/science.1253425

    Article  Google Scholar 

  • Phalan B, Balmford A, Green RE, Scharlemann JP (2011) Minimising the harm to biodiversity of producing more food globally. Food Policy 36:S62–S71. doi:10.1016/j.foodpol.2010.11.008

    Article  Google Scholar 

  • Pimentel D, McLaughlin L, Zepp A, Lakitan B (1991) Environmental and economic effects of reducing pesticide use. Bioscience 41:402–409. doi:10.1016/0167-8809(93)90030-S

    Article  Google Scholar 

  • Polasky S, Nelson E, Lonsdorf E, Fackler P, Starfield A (2005) Conserving species in a working landscape: land use with biological and economic objectives. Ecol Appl 15:1387–1401. doi:10.1890/03-5423

    Article  Google Scholar 

  • Polasky S, Nelson E, Camm J, Csuti B, Fackler P, Lonsdorf E, Montgomery C, White D, Arthur J, Garberyonts B (2008) Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol Conserv 141:1505–1524. doi:10.1016/j.biocon.2008.03.022

    Article  Google Scholar 

  • Princé K, Moussus JP, Jiguet F (2012) Mixed effectiveness of French agri-environment schemes for nationwide farmland bird conservation. Agric Ecosyst Environ 149:74–79. doi:10.1016/j.agee.2011.11.021

    Article  Google Scholar 

  • Princé K, Lorrillière R, Barbet-Massin M, Jiguet F (2013) Predicting the fate of French bird communities under agriculture and climate change scenarios. Environ Sci Policy 33:120–132. doi:10.1016/j.envsci.2013.04.009

    Article  Google Scholar 

  • Princé K, Lorrillière R, Barbet-Massin M, Léger F, Jiguet F (2015) Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts. PLoS ONE 10(2):e0117850. doi:10.1371/journal.pone.0117850

    Article  Google Scholar 

  • Puillet L, Martin O, Sauvant D, Tichit M (2011) Introducing efficiency into the analysis of individual lifetime performance variability: a key to assess herd management. Animal 5:123–133. doi:10.1017/S175173111000162X

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria URL: http://www.R-project.org/

  • Rounsevell M, Ewert F, Reginster I (2005) Future scenarios of European agricultural land use: II projecting changes in cropland and grassland. Agric Ecosyst Environ 107:117–135. doi:10.1016/j.agee.2004.12.002

    Article  Google Scholar 

  • Rutz C, Dwyer J, Schramek J (2014) More new wine in the same old bottles? The evolving nature of the CAP reform debate in Europe, and prospects for the future. Sociol Rural 54:266–284. doi:10.1111/soru.12033

    Article  Google Scholar 

  • Scholefield P, Firbank L, Butler S, Norris K, Jones LM, Petit S (2011) Modelling the European Farmland Bird Indicator in response to forecast land-use change in Europe. Ecol Indic 11:46–51. doi:10.1016/j.ecolind.2009.09.008

    Article  Google Scholar 

  • Scilab Consortium (2007). http://www.scilab.org

  • Smith P, Powlson DS, Smith JU, Falloon P, Coleman K (2000) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Glob Change Biol 6:525–539. doi:10.1046/j.1365-2486.2000.00331.x

    Article  Google Scholar 

  • Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–350. doi:10.1017/S1751731109990784

    Article  CAS  Google Scholar 

  • Stoate C (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365. doi:10.1006/jema.2001.0473

    Article  CAS  Google Scholar 

  • Teillard F, Allaire G, Cahuzac E, Léger F, Maigné E, Tichit M (2012) A novel method for mapping agricultural intensity reveals its spatial aggregation : implications for conservation policies. Agric Ecosyst Environ 149:135–143. doi:10.1016/j.agee.2011.12.018

    Article  Google Scholar 

  • Teillard F, Antoniucci D, Jiguet F, Tichit M (2014) Contrasting distributions of grassland and arable birds in heterogeneous farmlands: implications for conservation. Biol Conserv 176:243–251. doi:10.1016/j.biocon.2014.06.001

    Article  Google Scholar 

  • Teillard F, Jiguet F, Tichit M (2015) The response of farmland bird communities to agricultural intensity as influenced by aggregation. PLoS ONE 10(3):e0119674. doi:10.1371/journal.pone.0119674

    Article  Google Scholar 

  • van Haaren C, Bathke M (2008) Integrated landscape planning and remuneration of agri-environmental services Results of a case study in the Fuhrberg region of Germany. J Environ Manag 89:209–221. doi:10.1016/j.jenvman.2007.01.058

    Article  Google Scholar 

  • Vandermeer J, Perfecto I (2005) The future of farming and conservation. Science 308:1257–1258 (author reply 1257–8)

    Article  CAS  Google Scholar 

  • Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21:274–277

    Article  Google Scholar 

  • Verburg PH, Schulp C, Witte N, Veldkamp A (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric Ecosyst Environ 114:39–56. doi:10.1111/j.1523-1739.2006.00582.x

    Article  Google Scholar 

  • Vickery J, Tallowin J, Feber R, Asteraki E, Atkinson PW, Fuller RJ, Brown V (2001) The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J Appl Ecol 38:647–664

    Article  Google Scholar 

  • Whittingham MJ (2007) Will agri-environment schemes deliver substantial biodiversity gain, and if not why not? J Appl Ecol 44:1–5. doi:10.1046/j.1365-2664.2001.00626.x

    Article  Google Scholar 

  • Wilson KA, Meijaard E, Drummond S, Grantham HS, Boitani L, Catullo G, Christie L, Dennis R, Dutton I, Falcucci A, Maiorano L, Possingham HP, Rondinini C, Turner WR, Venter O, Watts M (2010) Conserving biodiversity in production landscapes. Ecol Appl 20:1721–1732. doi:10.1890/09-1051.1

    Article  CAS  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Proc R Soc Lond B Biol Sci 73:3–36. doi:10.1111/j.1467-9868.2010.00749.x

    Google Scholar 

Download references

Acknowledgments

This work was carried out with the financial support of the Agence Nationale de la Recherche (ANR), The French National Research Agency, under the Ecosystems and Sustainable Development Project NR-08-STRA-007, FARMBIRD—Coviability models of FARMing and BIRD biodiversity (SYSTERRA program). This work is part of the "Investments d'Avenir" Programme overseen by the French National Research Agency (ANR) (LabEx BASC; ANR-11-LABX-0034). We would like to thank the voluntary observers who collected the breeding bird survey data, thus ensuring the success of these long-term, large-scale surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Teillard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teillard, F., Doyen, L., Dross, C. et al. Optimal allocations of agricultural intensity reveal win-no loss solutions for food production and biodiversity. Reg Environ Change 17, 1397–1408 (2017). https://doi.org/10.1007/s10113-016-0947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-0947-x

Keywords

Navigation