Skip to main content
Log in

Source Characteristics of the 28 September 2018 Mw 7.5 Palu-Sulawesi, Indonesia (SE Asia) Earthquake Based on Inversion of Teleseismic Bodywaves

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We study source characteristics of the September 28, 2017 Mw 7.5 Palu (Sulawesi, Indonesia) earthquake that occurred in central Sulawesi and triggered devastating tsunami waves along the coastal plains of the island. We apply point-source teleseismic P- and SH-body waveform inversion and kinematic slip inversion techniques to obtain double-couple source mechanism and comprehensive finite-fault slip model of the source. The overall results show a strike-slip faulting mechanism (strike: 353° ± 5°, dip: 65° ± 5° and rake angles: − 4° ± 5°) with a small amount of dip-slip component at a shallow focal depth of 16 ± 2 km associated with the NW–SE trending left-lateral Palu-Koro strike-slip fault in the central Sulawesi region. The P- wave first motion polarity readings recorded at near-field and regional seismic stations are found to be reasonably consistent with the source mechanism solution of the earthquake and estimated error limits. We have extensively studied and considered the rupture velocity to be about 4.1 km/s during the slip inversion as previously proposed by seismological and geodetic studies for this event. The obtained finite-fault slip distribution model displays a rupture starting from the hypocentre located at 16 km, and then it propagated south accompanied by high amount of displacement, and reached the surface. The model has two slip-patches of 2.0–4.0 m at north of the fault plane, and 5.0–6.3 m at south near Palu city, which is very well matched with the observed damage and destruction related to the earthquake. The fault length and width, average slip and stress drop values are estimated to be 150 km, 45 km, 1.5 m and 13 bars, respectively. We have also obtained total source duration to be about 40 s with the most of seismic energy released at 10 s and 25 s. Furthermore, a small dip-slip component is evidently observed from both source models, and we suggest that this oblique shear which reflects the bending of slip vector along the strike direction could be comparatively responsible for tsunami generation along the left-lateral Palu-Koro Fault. The validation of this hypothesis could be done by evaluating the results of the mathematical tsunami simulations based on the comprehensive non-uniform slip models along with a high-resolution bathymetry data, which provides the details of the continental shelf in Palu bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3: a
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aki, K. (1972). Earthquake mechanism. Tectonophysics, 13, 423–446.

    Article  Google Scholar 

  • Arikawa, T., Muhari, A., Okumura, Y., Dohi, Y., Afriyanto, B., Sujatmiko, K. A., et al. (2018). Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake. Journal of Disaster Research. https://doi.org/10.20965/jdr.2018.sc20181204.

    Article  Google Scholar 

  • Bao, H., Ampuero, J.-P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., et al. (2019). Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience. https://doi.org/10.1038/s41561-018-0297-z.

    Article  Google Scholar 

  • Bassin, C., Laske, G., & Masters, G. N. Y. (2000). The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 81, F897.

    Google Scholar 

  • Bellier, O., Sèbrier, M., Beaudouin, T., Villeneuve, M., Braucher, R., Bourlès, D., et al. (2001). High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia). Terra Nova, 13(6), 463–470.

    Article  Google Scholar 

  • Carvajal, M., Araya-Cornejo, C., Sepúlveda, I., Melnick, D., & Haase, J. S. (2019). Nearly instantaneous tsunamis following the Mw 7.5 2018 Palu earthquake. Geophysical Research Letters, 46(10), 5117–5126.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425–478.

    Article  Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

    Article  Google Scholar 

  • ESA. (2018). Fault line land movement in Indonesia. European Space AgencyCopernicus Sentinel data processed by ESA, CC BY-SA 3.0 IGO. https://www.esa.int/spaceinimages/Images/2018/10/Fault_line_land_movement_in_Indonesia. Accessed Oct 2018.

  • Fang, J., Xu, C., Wen, Y., Wang, S., Xu, G., Zhao, Y., et al. (2019). The 2018 Mw 7.5 Palu earthquake: A supershear rupture event constrained by insar and broadband regional seismograms. Remote Sensing, 11, 1330. https://doi.org/10.3390/rs11111330.

    Article  Google Scholar 

  • Fielding, E. J., Lundgren, P. R., Taymaz, T., Yolsal-Çevikbilen, S., & Owen, S. E. (2013). Fault-slip source models for the 2011 M7.1 Van Earthquake in Turkey from SAR interferometry, pixel offset tracking, GPS and seismic waveform analysis. Seismological Research Letters, 84(4), 579–593.

    Article  Google Scholar 

  • Frederik, M. C., Adhitama, R., Hananto, N. D., Sahabuddin, S., Irfan, M., Moefti, O., et al. (2019). First results of a bathymetric survey of Palu Bay, Central Sulawesi, Indonesia following the Tsunamigenic Earthquake of 28 September 2018. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02280-7.

    Article  Google Scholar 

  • Goldstein, P., Dodge, D., Firpo, M., & Minner, L. (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers. In W. H. K. Lee, H. Kanamori, P. C. Jennings, & C. Kisslinger (Eds.), Invited contribution to the IASPEI international handbook of earthquake and engineering seismology. London: Academic Press.

    Google Scholar 

  • Goldstein, P., & Snoke, A. (2005). SAC Availability for the IRIS Community. Incorporated Institutions for Seismology Data Management Center Electronic Newsletter, 7(1).

  • Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353–434.

    Article  Google Scholar 

  • Hamilton, W. (1979). Tectonics of the Indonesian region (p. 1078). Utah: US Geological Survey, Professional Paper.

    Google Scholar 

  • Heidarzadeh, M., Muhari, A., & Wijanarto, A. B. (2019). Insights on the source of the 28 September 2018 Sulawesi Tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2065-9.

    Article  Google Scholar 

  • Hui, G., Li, S., Wang, P., Suo, Y., Wang, Q., & Somerville, I. D. (2018). Linkage between reactivation of the sinistral strike-slip faults and 28 September 2018 Mw7.5 Palu earthquake, Indonesia. Science Bulletin, 63(24), 1635–1640.

    Article  Google Scholar 

  • Imamura, F. (1995). Review of tsunami with a finite difference method. Long-wave runup models (pp. 25–42). Singapore: World Scientific Pub Co Inc.

    Google Scholar 

  • Jamelot, A., Gailler, A., Heinrich, Ph, Vallage, A., & Champenois, J. (2019). Tsunami simulations of the Sulawesi Mw 7.5 event: Comparison of seismic sources issued from a tsunami warning context versus post-event finite source. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02274-5.

    Article  Google Scholar 

  • Ji, C., Wald, D. J., & Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California earthquake; Part I: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92(4), 1192–1207.

    Article  Google Scholar 

  • Kanamori, H. (1994). Mechanics of earthquakes. Annual Review of Earth and Planetary Sciences, 22, 207–237.

    Article  Google Scholar 

  • Katili, J. A. (1978). Past and present geotectonic position of Sulawesi, Indonesia. Tectonophysics, 45(4), 289–322.

    Article  Google Scholar 

  • Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465.

    Article  Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 81, 2335–2350.

    Google Scholar 

  • Mikami, T., Shibayama, T., Esteban, M., Takabatake, T., Nakamura, R., Nishida, Y., et al. (2019). Field survey of the 2018 Sulawesi tsunami: Inundation and run-up heights and damage to coastal communities. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02258-5.

    Article  Google Scholar 

  • Molnar, P., & Lyon-Cáen, H. (1989). Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophysical Journal International, 99, 123–153.

    Article  Google Scholar 

  • Muhari, A., Imamura, F., Arikawa, T., & Afriyanto, B. (2018). Finding of the unexpected tsunami due to the strike-slip fault at central Sulawesi, Indonesia on 28 September 2018, from the preliminary field survey at Palu. http://irides.tohoku.ac.jp/media/files/earthquake/eq/2018_sulawesi_eq/IRIDeS_report_Palu_survey_20181015.pdf.

  • Okuwaki, R., Yagi, Y., & Shimizu, K. (2018). rokuwaki/2018PaluIndonesia: v2.0 (Version v2.0). Zenodo. http://doi.org/10.5281/zenodo.1469007.

  • Omira, R., Dogan, G. G., Hidayat, R., Husrin, S., Prasetya, G., Anunziato, A., et al. (2019). The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: A post-event field survey. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02145-z.

    Article  Google Scholar 

  • Pakoksung, K., Suppasri, A., Imamura, F., Athanasius, C., Omang, A., & Muhari, A. (2019). Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, using a two-layer model. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02235-y.

    Article  Google Scholar 

  • Paulik, R., Gusman, A., Williams, J. H., Pratama, G. M., Lin, S., Prawirabhakti, A., et al. (2019). Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02254-9.

    Article  Google Scholar 

  • Pelinovsky, E., Yuliadi, D., Prasetya, G., & Hidayat, R. (1997). The 1996 Sulawesi tsunami. Natural Hazards, 16, 29–38.

    Article  Google Scholar 

  • Putra, P. S., Aswan, A., Maryunani, K. A., Yulianto, E., & Kongko, W. (2019). Field survey of the 2018 Sulawesi tsunami deposits. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02181-9.

    Article  Google Scholar 

  • Saltogianni, V., Taymaz, T., Yolsal-çevikbilen, S., Eken, T., Moschas, F., & Stiros, S. (2017). Fault model for the 2015 Leucas (Aegean Arc) earthquake: Analysis based on seismological and geodetic observations. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120160080.

    Article  Google Scholar 

  • Sassa, S., & Tagakawa, T. (2019). Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides, 16(1), 195–200.

    Article  Google Scholar 

  • Socquet, A., Hollingsworth, J., Pathier, E., & Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nature Geoscience. https://doi.org/10.1038/s41561-018-0296-0.

    Article  Google Scholar 

  • Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., et al. (2006). Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. Journal of Geophysical Research, 111, B08409.

    Google Scholar 

  • Soloviev, S. L., Go, Ch N, & Kim, Kh S. (1992). Catalogue of tsunamis in the Pacific 1969–1982. Moscow: Soviet Geophysical Committee.

    Google Scholar 

  • Spencer, J. E. (2011). Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics. Earth and Planetary Science Letters, 308(3–4), 267–276.

    Article  Google Scholar 

  • Syamsidik, Benazir, Umar, M., Margaglio, G., & Fitrayansyah, A. (2019). Post-tsunami survey of the 28 September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: Impacts and challenges to coastal communities. International Journal of Disaster Risk Reduction, 38, 101229.

    Article  Google Scholar 

  • Tagaki, H., Pratama, M. B., Shota, K., Miguel, E., Aránguiz, R., & Ke, B. (2019). Analysis of generation and arrival time of landslide tsunami to Palu City due to the 2018 Sulawesi Earthquake. Landslides. https://doi.org/10.1007/s10346-019-01166-y.

    Article  Google Scholar 

  • Tan, O., & Taymaz, T. (2006). Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. In: Post-Collisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America, Special Paper, 409, 531–578.

    Google Scholar 

  • Taymaz, T., Jackson, J. A., & McKenzie, D. (1991). Active tectonics of the North and Central Aegean Sea. Geophysical Journal International, 106, 433–490.

    Article  Google Scholar 

  • Taymaz, T., Jackson, J. A., & Westaway, R. (1990). Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International, 102, 695–731.

    Article  Google Scholar 

  • Taymaz, T., & Price, S. (1992). The 1971 May 12 Burdur earthquake sequence, SW Turkey: A synthesis of seismological and geological observations. Geophysical Journal International, 108, 589–603.

    Article  Google Scholar 

  • Tsuji, Y., Imamura, F., Matsumoto, H., Synolakis, C. E., Nanang, P. T., Harada, S., et al. (1995). Field survey of the east Java earthquake and tsunami of June 3, 1994. Pure and Applied Geophysics, 144, 839–854.

    Article  Google Scholar 

  • Ulrich, T., Vater, S., Madden, E.H., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E.J., Liang, C., & Gabriel, A.-A. (2019). Coupled, Physics-based modelling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi Tsunami. https://doi.org/10.31223/osf.io/3bwqa.

  • Valkaniotis, S., Ganas, A., Tsironi, V., & Barberopoulou, A. (2018). A preliminary report on the M7.5 Palu earthquake co-seismic ruptures and landslides using image correlation techniques on optical satellite data, EMSC report.

  • Walpersdorf, A., Vigny, C., Subarya, C., & Manurung, P. (1998). Monitoring of the Palu-Koro Fault (Sulawesi) by GPS. Geophysical Reseacrh Letters, 25, 2313–2316.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. EOS Trans AGU, 79(47), 579.

    Article  Google Scholar 

  • Yagi, Y., & Kikuchi, M. (2000). Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophysical Research Letters, 27, 1969–1972.

    Article  Google Scholar 

  • Yagi, Y., Nishimura, N., & Kasahara, A. (2012). Source process of the 12 May 2008 Wenchuan, China, earthquake determined by waveform inversion of teleseismic body waves with a data covariance matrix. Earth Planets Space, 64, E13–E16.

    Article  Google Scholar 

  • Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S., et al. (2014). Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activity. Geophysical Research Letters, 41, 4201–4206.

    Article  Google Scholar 

  • Yolsal-Çevikbilen, S., & Taymaz, T. (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536(537), 61–100.

    Article  Google Scholar 

  • Yolsal-Çevikbilen, S., Ulutaş, E., & Taymaz, T. (2019). Source models of the 2012 Haida Gwaii (Canada) and 2015 Illapel (Chile) earthquakes and numerical simulations of related tsunamis. Pure and Applied Geophysics (PAAG), 176(7), 2995–3033.

    Article  Google Scholar 

  • Zhang, Y., Chen, Y.-T., & Feng, W. (2019). Complex multiple-segment ruptures of the 28 September 2018, Sulawesi, Indonesia, earthquake. Science Bulletin, 64, 650–652.

    Article  Google Scholar 

  • Zwick, P., McCaffrey, R., & Abers, G. (1994). MT5 Program, in Bibliographic References and BSSA Database (August 1994). IASPEI Software Library, vol. 4. http://www.iaspei.org/.

Download references

Acknowledgements

We would like to thank Turkish Academy of Sciences (TÜBA) in the framework for Young Scientist Award Program (TÜBA-GEBIP), İstanbul Technical University Research Fund (İTÜ-BAP), Turkish National Scientific Technological Foundation (TÜBİTAK), and Alexander von Humboldt Foundation (AvH) for their financial support. Teleseismic body waveform data used are from the International Federation of Digital Seismograph Networks (FDSN) and the Global Digital Seismograph Network (GDSN) stations and archived at the IRIS-DMC, http://ds.iris.edu/wilber3. The Generic Mapping Tools (GMT; Wessel and Smith 1998) and SAC2000 software packages (Goldstein et al. 2003; Goldstein and Snoke 2005) were used for the preparation of the figures and for processing conventional earthquake data, respectively. We appreciate Yuji Yagi’s generous permission to use the kinematic slip inversion code to analyze rupture history and slip distribution models. We also thank two anonymous reviewers and Alexander Rabinovich (Editor-in-Chief) for their constructive comments and suggestions which have improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Yolsal-Çevikbilen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16468 kb)

Supplementary material 2 (MP4 345 kb)

Supplementary material 3 (MP4 39016 kb)

Supplementary material 4 (GIF 8673 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yolsal-Çevikbilen, S., Taymaz, T. Source Characteristics of the 28 September 2018 Mw 7.5 Palu-Sulawesi, Indonesia (SE Asia) Earthquake Based on Inversion of Teleseismic Bodywaves. Pure Appl. Geophys. 176, 4111–4126 (2019). https://doi.org/10.1007/s00024-019-02294-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02294-1

Keywords

Navigation