Skip to main content
Log in

Tsunami Hazard in La Réunion Island (SW Indian Ocean): Scenario-Based Numerical Modelling on Vulnerable Coastal Sites

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Several major tsunamis have affected the southwest Indian Ocean area since the 2004 Sumatra event, and some of them (2005, 2006, 2007 and 2010) have hit La Réunion Island in the southwest Indian Ocean. However, tsunami hazard is not well defined for La Réunion Island where vulnerable coastlines can be exposed. This study offers a first tsunami hazard assesment for La Réunion Island. We first review the historical tsunami observations made on the coastlines, where high tsunami waves (2–3 m) have been reported on the western coast, especially during the 2004 Indian Ocean tsunami. Numerical models of historical scenarios yield results consistent with available observations on the coastal sites (the harbours of La Pointe des Galets and Saint-Paul). The 1833 Pagai earthquake and tsunami can be considered as the worst-case historical scenario for this area. In a second step, we assess the tsunami exposure by covering the major subduction zones with syntethic events of constant magnitude (8.7, 9.0 and 9.3). The aggregation of magnitude 8.7 scenarios all generate strong currents in the harbours (3–7 m s\(^{-1}\)) and about 2 m of tsunami maximum height without significant inundation. The analysis of the magnitude 9.0 events confirms that the main commercial harbour (Port Est) is more vulnerable than Port Ouest and that flooding in Saint-Paul is limited to the beach area and the river mouth. Finally, the magnitude 9.3 scenarios show limited inundations close to the beach and in the riverbed in Saint-Paul. More generally, the results confirm that for La Runion, the Sumatra subduction zone is the most threatening non-local source area for tsunami generation. This study also shows that far-field coastal sites should be prepared for tsunami hazard and that further work is needed to improve operational warning procedures. Forecast methods should be developed to provide tools to enable the authorities to anticipate the local effects of tsunamis and to evacuate the harbours in sufficient time when such an earthquake occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allgeyer, S., & Cummins, P. (2014). Numerical tsunami simulation including elastic loading and seawater density stratification. Geophysical Research Letters, 41(7), 2368–2375.

    Article  Google Scholar 

  • Allgeyer, S., Daubord, C., Hébert, H., Loevenbruck, A., Schindelé, F., & Madariaga, R. (2013a). Could a 1755-like tsunami reach the French Atlantic coastline? constraints from twentieth century observations and numerical modeling. Pure and Applied Geophysics, 170(9–10), 1415–1431.

    Article  Google Scholar 

  • Allgeyer, S., Hébert, H., & Madariaga, R. (2013b). Modelling the tsunami free oscillations in the Marquesas (French Polynesia). Geophysical Journal International, 193(3), 1447–1459.

    Article  Google Scholar 

  • Ammon, C. J., Kanamori, H., Lay, T., & Velasco, A. A. (2006). The 17 July 2006 Java tsunami earthquake. Geophysical Research Letters, 33(L24,308), 308.

    Google Scholar 

  • British Oceanographic Data Center. (2010). GEBCO (General Bathynetric Chart of the Oceans). http://www.gebco.net/data_and_products/gridded_bathymetry_data

  • Coffin, M. F., Gahagan, L. M., & Lawver, L. A. (1998). Present-Day Plate Boundary Digital Data Compilation. University of Texas Institute for Geophysics Technical Report No. 174.

  • Courant, R., Friedrichs, K., & Lewy, H. (1928). Über die partiellen differenzengleichungen der mathematischen physik. Mathematische Annalen, 100(1), 32–74.

    Article  Google Scholar 

  • Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 43, 50–67.

    Article  Google Scholar 

  • Dengler, L., & Uslu, B. (2011). Effects of Harbor modification on Crescent City, California’s Tsunami vulnerability. Pure and Applied Geophysics, 168(6–7), 1175–1185.

    Article  Google Scholar 

  • Dunbar, P., & McCullough, H. (2012). Global tsunami deposits database. Natural Hazards, 63(1), 267–278.

    Article  Google Scholar 

  • Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., & Harbitz, C., et al. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters, 34(12).

  • Geist, E. L., Bilek, S. L., Arcas, D., & Titov, V. V. (2006). Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth Planets and Space, 58(2), 185–193.

    Article  Google Scholar 

  • Geist, E. L., Parsons, T., ten Brink, U. S., & Lee, H. J. (2009). Tsunami probability. In: Bernard, E. N., Robinson, A. R. (eds) The Sea, p. 462.

  • Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: Does it really matter? Natural Hazards and Earth System Sciences, 13(6), 1507–1526. doi:10.5194/nhess-13-1507-2013.

    Article  Google Scholar 

  • Hébert, H., & Schindelé, F. (2015). Tsunami impact computed from offshore modeling and coastal amplification laws: Insights from the 2004 Indian Ocean Tsunami. Pure and Applied Geophysics, 172(12), 3385–3407.

    Article  Google Scholar 

  • Hébert, H., Heinrich, P., Schindelé, F., & Piatanesi, A. (2001). Far-field simulation of tsunami propagation in the Pacific Ocean: Impact on the Marquesas Islands (French Polynesia). Journal of Geophysical Research Oceans, 106(C5), 9161–9177.

    Article  Google Scholar 

  • Hébert, H., Sladen, A., & Schindelé, F. (2007). Numerical modeling of the great 2004 Indian Ocean tsunami: Focus on the Mascarene Islands. Bulletin of the Seismological Society of America, 97(1A), S208–S222.

    Article  Google Scholar 

  • Hébert, H., Burg, P. E., Binet, R., Lavigne, F., Allgeyer, S., & Schindelé, F. (2012). The 2006 July 17 Java (Indonesia) tsunami from satellite imagery and numerical modelling: A single or complex source? Geophysical Journal International, 191(3), 1255–1271. doi:10.1111/j.1365-246X.2012.05666.x.

    Google Scholar 

  • Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 M-w 7.7 Pakistan inland earthquake. Geophysical Journal International, 199(2), 752–766.

    Article  Google Scholar 

  • Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., Yalciner, A. C., Mokhtari, M., & Esmaeily, A. (2008). Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering, 35(8–9), 774–786. doi:10.1016/j.oceaneng.2008.01.017.

    Article  Google Scholar 

  • Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., Elosegui, P., Fritz, H. M., Suwargadi, B. W., Pranantyo, I. R., Li, L., Macpherson, K. A., Skanavis, V., Synolakis, C. E., & Sieh, K. (2012). The 2010 M-w 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research-Solid Earth, 117(B6).

  • Jackson, L. E., Barrie, J. V., Forbes, D. L., & Shaw, J. (2005). Effects of the 26 December 2004 Indian Ocean tsunami in the Republic of Seychelles. Report of the Canada- UNESCO Indian Ocean Tsunami Expedition, 19 January 5 February 2005. Geological Survey of Canada (Open File 4539)

  • Jamelot, A., & Reymond, D. (2015). New tsunami forecast tools for the French Polynesia tsunami warning system Part II: Numerical modelling and tsunami height estimation. Pure and Applied Geophysics, 172(3–4), 805–819.

    Article  Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359.

    Article  Google Scholar 

  • Kelfoun, K., Giachetti, T., & Labazuy, P. (2010). Landslide-generated tsunamis at Réunion Island. Journal of Geophysical Research Solid Earth (1978–2012), 115(F4), F04,012.

    Google Scholar 

  • Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and coriolis effects. Ocean Modelling, 62, 39–55. doi:10.1016/j.ocemod.2012.11.009.

    Article  Google Scholar 

  • Konca, A. O., Hjorleifsdottir, V., Song, T. R. A., Avouac, J. P., Helmberger, D. V., Ji, C., et al. (2007). Rupture kinematics of the 2005 Mw 8.6 Nias-Simeulue Earthquake from the joint inversion of seismic and geodetic data. Bulletin of the Seismological Society of America, 97(1A), S307–S322.

    Article  Google Scholar 

  • Konca, A. O., Avouac, J. P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., et al. (2008). Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature, 456(7222), 631–635.

    Article  Google Scholar 

  • Kopp, C., Fruehn, J., Flueh, E., Reichert, C., Kukowski, N., Bialas, J., et al. (2000). Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329(1–4), 171–191. doi:10.1016/S0040-1951(00)00195-5.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., et al. (2005). The great Sumatra–Andaman earthquake of 26 december 2004. Science, 308(5725), 1127–1133.

    Article  Google Scholar 

  • Litto3D Project. (2012). La Réunion. http://diffusion.shom.fr/produits/altimetrie-littorale/litto3d-reunion2012.html

  • McCaffrey, R. (2008). Global frequency of magnitude 9 earthquakes. Geology, 36(3), 263–266.

    Article  Google Scholar 

  • Merrifield, M. A., Firing, Y. L., Aarup, T., Agricole, W., Brundrit, G., Chang Seng, D., et al. (2005). Tide gauge observations of the Indian Ocean tsunami, December 26, 2004. Geophysical Research Letters, 32(9), L09,603.

    Article  Google Scholar 

  • Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., et al. (2006). Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. Journal of Geophysical Research Solid Earth, 111(B6), B06,403. doi:10.1029/2005JB004025.

    Google Scholar 

  • Newcomb, K. R., & McCann, W. R. (1987). Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research Solid Earth, 92(B1), 421–439. doi:10.1029/JB092iB01p00421.

    Article  Google Scholar 

  • Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophysical Research Letters, 38(5).

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2008). Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International, 172(3), 995–1015.

    Article  Google Scholar 

  • Okal, E. A., Sladen, A., & Okal, E. A. (2006). Rodrigues, Mauritius, and Réunion islands field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22(S3), 241–261.

    Article  Google Scholar 

  • Pattiaratchi, C. B., & Wijeratne, E. (2009). Tide gauge observations of 2004–2007 Indian Ocean tsunamis from Sri Lanka and Western Australia. Pure and Applied Geophysics, 166(1), 233–258. doi:10.1007/s00024-008-0424-5.

    Article  Google Scholar 

  • Préfecture de La Réunion. (2008). Plan de Secours Spécialisé tsunami. Arrêté Préfectoral1 (1773)

  • Prendergast, A. L., & Brown, N. (2012). Far-field impact and coastal sedimentation associated with the 2006 Java tsunami in West Australia. Natural Hazards, 60(1), 69–79.

    Article  Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., & Stephenson, F. E. (2006). The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans. Surveys in Geophysics, 27(6), 647–677.

    Article  Google Scholar 

  • Rajendran, C. P., Ramanamurthy, M. V., & Reddy, N. T. (2008). Hazard implications of the late arrival of the 1945 Makran tsunami. Current Science, 95(12).

  • Rodriguez, M., Chamot-Rooke, N., & Hébert, H. (2013). Owen Ridge deep-water submarine landslides: Implications for tsunami hazard along the Oman coast. Natural Hazards and Earth System Sciences, 13, 417–424. doi:10.5194/nhess-13-417-2013.

    Article  Google Scholar 

  • Rong, Y., Jackson, D. D., Magistrale, H., & Goldfinger, C. (2014a). Magnitude limits of subduction zone earthquakes. Bulletin of the Seismological Society of America, 104(5), 2359–2377.

    Article  Google Scholar 

  • Rong, Y., Jackson, D. D., Magistrale, H., & Goldfinger, C. (2014b). Magnitude limits of subduction zone earthquakes. Bulletin of the Seismological Society of America, 104(5):2359–2377. doi:10.1785/0120130287. http://www.bssaonline.org/content/104/5/2359.abstract, http://www.bssaonline.org/content/104/5/2359.full.pdf+html

  • Sahal, A., & Morin, J. (2012). Effects of the October 25, 2010, Mentawai tsunami in La Réunion Island (France): observations and crisis management. Natural Hazards, 62(3), 1125–1136.

    Article  Google Scholar 

  • Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H., Schindelé, F., et al. (2009). The tsunami triggered by the 21 May 2003 Boumerdes–Zemmouri (Algeria) earthquake: Field investigations on the French Mediterranean coast and tsunami modelling. Natural Hazards Earth System Science, 9(6), 1823–1834.

    Article  Google Scholar 

  • Sahal, A., Morin, J., Schindelé, F., & Lavigne, F. (2011). A catalog of Tsunamis in La Réunon Island from August 27th, 1883 to October 26th, 2010. Science of Tsunami Hazards, 30(3).

  • Schindelé, F., Gailler, A., Hébert, H., Loevenbruck, A., Gutierrez, E., Monnier, A., et al. (2015). Implementation and challenges of the tsunami warning system in the western Mediterranean. Pure and Applied Geophysics, 172(3–4), 821–833.

    Article  Google Scholar 

  • Sladen, A., & Hébert, H. (2008). On the use of satellite altimetry to infer the earthquake rupture characteristics: Application to the 2004 Sumatra event. Geophysical Journal International, 172(2), 707–714.

    Article  Google Scholar 

  • Sommerfeld A. (1912). Die Greensche Funktion der Schwingungslgleichung., vol 21

  • Storchak, D. A., Di Giacomo, D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H. K., et al. (2013). Public release of the ISC-GEM global instrumental earthquake catalogue (1900–2009). Seismological Research Letters, 84(5), 810–815.

    Article  Google Scholar 

  • Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., et al. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), 381–398. doi:10.1111/j.1365-246X.2004.02222.x.

    Article  Google Scholar 

  • Yeh, H., Liu, P., Briggs, M., & Synolakis, C. (1994). Propagation and amplification of tsunamis at coastal boundaries. Nature, 372(6504), 353–355.

    Article  Google Scholar 

  • Zachariasen, J., Sieh, K., Taylor, F. W., Edwards, R. L., & Hantoro, W. S. (1999). Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls. Journal of Geophysical Research Solid Earth, 104(B1), 895–919. doi:10.1029/1998JB900050.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the PREPARTOI project and by the LRC (Laboratoire de Recherche Commun Yves Rocard CEA-ENS Paris). The authors thank the PREPARTOI partners for fruitful discussion on tsunami hazard and observations in the Indian Ocean. E.A. Okal is also acknowledged for discussion about the far-field modelling in the Indian Ocean and we also the discussion with F. Schindele about warning procedures and tsunami hazard. This work was supported by resources provided by the Pawsey Supercomputing Center with funding from the Australian Gouvernement and the Gouvernement of Western Australia. Preliminary computations were performed using HPC resources from GENCI-CCRT (France) and the Terrawulf cluster, a computational facility supported through the AuScope initiative. AuScope Ltd. is funded under the National Collaborative Research Infrastructure Strategy (NCRIS), an Australian Commonwealth Government Program. The authors thank the two anonymous reviewers for their comments and Dr. H. McQueen for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Allgeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allgeyer, S., Quentel, É., Hébert, H. et al. Tsunami Hazard in La Réunion Island (SW Indian Ocean): Scenario-Based Numerical Modelling on Vulnerable Coastal Sites. Pure Appl. Geophys. 174, 3123–3145 (2017). https://doi.org/10.1007/s00024-017-1632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1632-9

Keywords

Navigation