Skip to main content
Log in

Satellite Observations of Plume-like Streaks in a Cloud Field in Canada

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On the afternoon of 28 October 2013, plume-like streaks were detected by geostationary and polar orbiting satellites over eastern Ontario, Canada. These streaks were characterized by enhanced reflectivity in the visible bands and warmer brightness temperatures at 3.9 µm. These streaks were part of a low-level liquid water cloud layer. Due to the similarity of the streaks to plume-like features in marine stratocumulus caused by smoke from the stacks of ships, so-called ship tracks, a local source of emitted aerosols was suspected and subsequently identified as the burning of logging residue. This event provides further support for the ability of locally enhanced aerosol loading to alter microphysical characteristics of clouds. Ship tracks, pollution plumes from industrial burning, and pyro-cumulus are known examples of this type of interaction. In addition, the plume-like streaks could be used indirectly to identify the location of the source of the emitted particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cheng, Y., Lohmann, U., Zhang, J., Luo, Y., Liu, Z., and Lesins, G. (2005), Contributions of changes in sea surface temperature and aerosol loading to decreasing precipitation trend in Southern China. J. Climate 18, 1381–1390.

  • Fromm, M., Lindsey, D.T., Servranckx, R., Yue, G., Trickl, T., Sica, R., Doucet, P., Godin-Beekmann, S. (2010), The Untold Story of Pyrocumulonimbus. Bull. Amer. Meteor. Soc. 91:9, 1193–1209. doi:10.1175/2010BAMS3004.1.

  • Giglio, L., Kendall, J.D., and Mack, R. (2003), A multi-year active fire dataset for the tropics derived from the TRMM VIRS, Int. J. Remote Sens. 24, 4505–4525.

  • Giglio, L., Loboda, T., Roy, D.P., Quayle, B., and Justice, C.O. (2009), An active-fire based burned area mapping algorithm for the MODIS sensor, Remote Sens. Environ. 113, 408–420, doi:10.1016/j.rse.2008.10.006.

  • Hillger, D. W., and Schmit, T.J. (2009), The GOES-13 science test: A synopsis, Bull. Amer. Meteor. Soc. 90, 6–11.

  • Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S., Solbrig, J., Kidder, S., Bachmeier, S., Jasmin, T., and Rink, T. (2013), First-Light imagery from Suomi NPP VIIRS, Bull. Amer. Meteor. Soc. 94, 1019–1029, doi:10.1175/BAMS-D-12-00097.1.

  • Kaskaoutis, D.G., Kharol, S.K., Sifakis, N., Nastos, P.T., Sharma, A.R., Badarinath, K.V.S., and Kambezidis, H.D. (2011), Satellite monitoring of the biomass-burning aerosols during the wildfires of August 2007 in Greece: Climate implications, Atmospheric Environment 45, 716–726.

  • Lindsey, D. T., and Fromm, M. (2008), Evidence of the cloud lifetime effect from wildfire-induced thunderstorms, Geophys. Res. Lett. 35, 22809, doi:10.1029/2008GL035680.

  • National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Cloud Effective Particle Size and Cloud Optical Thickness Algorithm Theoretical Basis Document (ATBD) (D43750 Rev A), CDRL No. A032. (2010).

  • Platnick, S., Durkee, P.A., Nielsen, K., Taylor, J.P., Tsay, S.-C., King, M.D., Ferek, R.J., Hobbs, P.V., and Rottman, J.W. (2000), The role of background cloud microphysics in the radiative formation of ship tracks. J. Atmos. Sci. 57, 2607–2624.

  • Prins, E.M., and Menzel, W.P. (1992), Geostationary satellite detection of biomass burning in South America, Int. J. Remote Sens. 13, 2783–2799.

  • Prins, E.M., Feltz, J.M., Menzel, W.P., and Ward, D.E. (1998), An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America, J. Geophys. Res. 103(D24), 31,821–1,835, doi:10.1029/98JD01720.

  • Rosenfeld, D. (2000), Suppression of rain and snow by urban and industrial air pollution, Science 287, 1793–1796.

  • Sifakis, N. I., and Iossifidis, C. (2014), CHRISTINE Code for high resolution satellite mapping of optical thickness and angstrom exponent. Part I: Algorithm and code, Computers and Geosciences 62, 136–141.

  • Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci. 34, 1149–1152.

  • Weaver, J.F., Lindsey, D.T., Bikos, D.E., Schmidt, C.C., and Prins, E.M. (2004), Fire Detection using GOES-11 Rapid Scan Imagery. Wea. Forecasting 19, 496–510.

  • Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C. (2012), Near-real-time global biomass burning emissions product from geostationary satellite constellation, J. Geophys. Res. 117, D14201, doi:10.1029/2012JD017459.

Download references

Acknowledgments

This research is primarily funded by NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS) GOES-R Program Office. We would also like to extend our thanks to Rene Servranckx (Environment Canada) and Mike Fromm (Naval Research Laboratory) for their assistance. Further thanks are extended to Natalie Belanger, Northeast Regional GIS Data Technician, Sudbury and Mike Jackson, Northeast Regional Fire Response Specialist, Sudbury. The views, opinions, and findings in this report are those of the authors, and should not be construed as an official NOAA and or US Government position, policy, or decision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis Grasso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grasso, L., Lindsey, D.T., Seaman, C.J. et al. Satellite Observations of Plume-like Streaks in a Cloud Field in Canada. Pure Appl. Geophys. 173, 3103–3110 (2016). https://doi.org/10.1007/s00024-015-1076-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1076-z

Keywords

Navigation