Skip to main content
Log in

Love and Rayleigh Wave Tomography of the Qinghai-Tibet Plateau and Surrounding Areas

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Surface wave data were initially collected from events of magnitude Ms ≥ 5.0 and shallow or moderate focal depth occurred between 1980 and 2002: 713 of them generated Rayleigh waves and 660 Love waves, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1,525 source-station Rayleigh waveforms and 1,464 Love wave trains have been processed by frequency-time analysis to obtain group velocities. After inverting the path-averaged group times by means of a damped least-squares approach, we have retrieved location-dependent group velocities on a 2° × 2°-sized grid and constructed Rayleigh- and Love-wave group velocity maps at periods 10.4–105.0 s. Resolution and covariance matrices and the rms group velocity misfit have been computed in order to check the quality of the results. Afterwards, depth-dependent SV- and SH-wave velocity models of the crust and upper mantle are obtained by inversion of local Rayleigh- and Love-wave group velocities using a differential damped least-squares method. The results provide: (a) Rayleigh- and Love-wave group velocities at various periods; (b) SV- and SH-wave differential velocity maps at different depths; (c) sharp images of the subducted lithosphere by velocity cross sections along prefixed profiles; (d) regionalized dispersion curves and velocity-depth models related to the main geological formations. The lithospheric root presents a depth that can be substantiated at ~140 km (Qiangtang Block) and exceptionally at ~180 km in some places (Lhasa Block), and which exhibits laterally varying fast velocity very close to that of some shields that even reaches ~4.8 km/s under the northern Lhasa Block and the Qiangtang Block. Slow-velocity anomalies of 7–10% or more beneath southern Tibet and the eastern edge of the Plateau support the idea of a mechanically weak middle-to-lower crust and the existence of crustal flow in Tibet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aki, K., and Richards, P.G., Quantitative Seismology: Theory and Methods (W.H. Freeman, San Francisco 1980).

  • Anderson, D.L. Theory of the Earth (Blackwell Scientific Publications, Boston 1989).

  • Badal, J., Corchete, V., Payo, G., Pujades, L., and Canas, J.A. (1996), Imaging of shear wave velocity structure beneath Iberia, Geophys. J. Int. 124, 591–611.

  • Badal, J., Corchete, V., Payo, G., Serón, F.J., Canas, J.A., and Pujades, L. (1992), Deep structure of the Iberian Peninsula determined by Rayleigh wave velocity inversion, Geophys. J. Int. 108, 71–88.

  • Beaumont, C., Jamieson, R.A., Nguyen, M.H., and Lee, B. (2001), Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature 414, 738–742.

  • Bird, P. (1991), Lateral extrusion lower crust from under high topography in the isostatic limit, J. Geophys. Res. 96, 10,275–10,286.

  • Bonner, J.L. and Herrin, E.T. (1999), Surface wave studies of the Sierra Madre Occidental of Northern Mexico, Bull. Seismol. Soc. Am. 89, 1323–1337.

  • Bouriot, L. and Romanowicz, B. (1992) Crust and upper mantle tomography in Tibet using surface waves, Geophys. Res. Lett. 19, 881–884.

  • Brandon, C. and Romanowicz, B. (1986), A “no-lid” zone in the central Chang-Thang platform of Tibet: Evidence from pure path phase velocity measurements of long period Rayleigh waves, J. Geophys. Res. 91, 6547–6564.

  • Brown, L.D., Zhao, W., Nelson, K.D., Hauck, M., Alsdorf, D., Ross, A., Cogan, M., Clark, M., Liu, X., and Chen, J. (1996), Bright spots, structure and magmatism in Southern Tibet from INDEPTH seismic reflection profiling. Science 274, 1688–1690.

  • Chen, L., Booker, J.R., Jones, A.G., Wu, N., Unsworth, M.J., Wei, W., and Tan, H. (1996), Electrically conductive crust in shouthern Tibet from INDEPTH magnetotelluric surveying, Science 274, 1694–1696.

  • Chen, Y., Badal, J., and Zhang, Z. (2009) Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet Plateau and surrounding regions, J. Asian Earth Sci. 36, 289–302.

  • Chun, K.Y. and McEvilly, T.V. (1986) Crustal structure in Tibet: High seismic velocity in the lower crust, J. Geophys. Res. 91, 10,405–10,411.

  • Chun, K.Y. and Yoshii, T. (1977), Crustal structure of the Tibet Plateau: a surface wave study by a moving window analysis, Bull. Seism. Soc. Am. 67, 735–750.

  • Clark, M. K. and Royden, L.H. (2000), Topographic ooze: Building the eastern margin of Tibet by lower crustal flow, Geology 28(8), 703–706.

  • Corchete, V., Badal, J., Serón, F.J., and Soria, A. (1995), Tomographic images of the Iberian subcrustal lithosphere and asthenosphere, J. Geophys. Res. 100, 24133–24146.

  • Curtis, A. and Woodhouse, J.H. (1997), Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave phase velocity inversion, J. Geophys. Res. 102, 11,789–11,813.

  • Dewey, J.F., Shackleton, R.M., Chang, C., and Sun, Y. (1988), The tectonic evolution of the Tibetan Plateau, Phil. Trans. Roy. Soc. London, Series A, Mathematical and Physical Sciences, The Geological Evolution of Tibet, Geotraverse of the Qinghai-Xizang Plateau 327, 379–413.

  • Dimri, V., Deconvolution and Inverse Theory, Application to Geophysical Problems (Elsevier, Amsterdam 1992).

  • Dziewonski, A.M. (1971), On regional differences in dispersion of mantle waves, Geophys. J. R. Astron. Soc. 22, 289–325.

  • Feng, C.C. and Teng, T. (1983), Three-dimension crust and upper mantle structure of the Eurasian continent, J. Geophys. Res. 83, 2261–2272.

  • Frederiksen, A.W., Bostock, M.G., and Cassidy, J.F. (2001), S-wave velocity structure of the Canadian upper mantle, Phys. Earth Planet. Int. 124, 175–191.

  • Friederich, W. (2003), The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms, Geophys. J. Int. 153, 88–102.

  • Gupta, H.K. and Narain, K. (1967), Crustal structure of the Himalayan and the Tibetan Plateau regions from surface wave dispersion, Bull. Seism. Soc. Am. 57, 235–248.

  • Herrmann, R.B. (1973), Some aspects of band-pass filtering of surface waves, Bull. Seism. Soc. Am. 63, 663–671.

  • Herrmann, R.B. Computer Programs in Seismology (version 3.30) (St. Louis University, Missouri 2002).

  • Herrmann, R.B., Ammon, C.J., and Julia, J. (2001), Application of joint receiver-function surface-wave dispersion for local structure in Eurasia, 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, 46–54.

  • Huang, W.C., Ni, J.F., Tilmann, F., Nelson, D., Guo, J., Zhao, W., Mechie, J., Kind, R., Saul, J., Rapine, R., and Hear, T.M. (2000), Seismic polarization anisotropy beneath the central Tibetan Plateau, J. Geophys. Res. 105, 27,979–27,989.

  • Huang, Z., Peng, Y., Luo, Y., Zheng, Y., and Su, W. (2004), Azimuthal anisotropy of Rayleigh waves in East Asia, Geophys. Res. Lett. 31, L15617, doi:10.1029/2004GL020399.

  • Huang, Z., Su, W., Peng, Y., Zheng, Y., and Li, H. (2003), Rayleigh wave tomography of China and adjacent regions, J. Geopys. Res. 108, 2073, doi:10.1029/2001JB001696.

  • Jacobsen, B.H., Mosegaard, K., and Sibani, P. Inverse Methods, Lecture Notes in Earth Sciences Series, 63 (Springer-Verlag, Berlin 1996).

  • Jarchow, C.M. and Thompson, G.A. (1989), The nature of the Mohorovičić discontinuity, Ann. Rev. Earth Planet. Sci. 17, 475–506.

  • Jemberie, A.L. and Mitchell, B.J. (2004), Shear wave Q structure and its lateral variation in the crust of China and surrounding regions, Geophys. J. Int. 157, 363–380.

  • Jin, Y., McNutt, M.K., and Zhu, Y. (1994), Evidence from gravity and topography data for folding of Tibet. Nature 371, 669–674.

  • Jobert, N., Jounet, B., Jobert, G., Hirn, A., and Sun, K.Z. (1985), Deep structure of southern Tibet inferred from the dispersion of Raleigh waves through a long-period seismic network. Nature 313, 386–388.

  • Johnson, M.R.W. (2002), Shortening budgets and the role of continental subduction during the India-Asia collision, Earth-Science Rev. 59, 101–123.

  • Kind, R., Ni, J., Zhao, W., Wu, J., Yuan, X., Zhao, L., Sandoval, E., Reese, C., Nabelek, J., and Hearn, T. (1996), Evidence from earthquake data for a partially molten crustal layer in southern Tibet, Science 274, 1692–1694.

  • Knopoff, L. (1972), Observation and inversion of surface wave dispersion, Tectonophysics 13, 497–519.

  • Knopoff, L. and Chang, F.S. (1977), The inversion of surface wave dispersion data with random errors, J. Geophys. Res. 43, 299–309.

  • Larson, E.W.F. and Ekstr öm, G. (2001), Global Models of Surface Wave Group Velocity, Pure Appl. Geophys. 158, 1377–1399.

  • Lavé, J., Avouac, J.P., Lacassin, R., Tapponnier, P., and Montagner, J.P. (1996), Seismic anisotropy beneath Tibet: Evidence for eastward extrusion of the Tibetan lithosphere? Earth Planet. Sci. Lett. 140, 83–96.

  • Lev, E., Long, M.D., and van der Hilst, R.D. (2006), Seismic anisotropy in Eastern Tibet from shear-wave splitting reveals changes in lithospheric deformation. Earth Planet Sci. Lett. 251, 293–304.

  • Léveque, J.J., Rivera, L., and Wittlinger, G. (1993), On the use of the checkerboard test to assess the resolution of tomographic inversions, Geophys. J. Int. 115, 313–318.

  • Levshin, A.L., Ritzwoller, M.H., and Ratnikova, L.I. (1994), The nature and cause of polarization anomalies of surface waves crossing northern and central Eurasia, Geophys. J. Int. 117, 577–590.

  • Levshin, A.L., Ritzwoller, M.H., and Resovsky, J.S. (1999), Source effects on surface wave group travel times and group velocity maps, Phys. Earth Planet. Inter. 115, 293–312.

  • Levshin, A.L., Ritzwoller, M.H., and Shapiro, N.M. (2005), The use of central higher modes to constrain crustal structure across Central Asia. Geophys. J. Int. 160, 961–972.

  • Li, A., and Detrick, R.S. (2006), Seismic structure of Iceland from Rayleigh wave inversions and geodynamic implications, Earth Planet. Sci. Lett. 241, 901–912.

  • Li, C., van der Hilst, R.D., Meltzer, A.S., and Engdahl, E. R. (2008), Subdction of the Indian lithosphere beneath the Tibetan Plateau and Burma, Earth Planet. Sci. Lett. 274, 157–168.

  • Ludwig, W., Nafe, J., and Drake, C. Seismic refraction. In The Sea, vol. 4, edited by A. Maxwell, pp. 53–84 (John Wiley, Hoboken, NJ 1970).

  • Maceira, M., Taylor, S.R., Ammon, C.J., and Yang, X.N. (2005), High-resolution Rayleigh wave slowness tomography of central Asia, J. Geophys. Res. 110, JB06304.

  • Makovsky, Y. and Klemperer, S.L. (1999), Measuring the seismic properties of Tibetan bright spots: Evidence for free aqueous fluids in the Tibetan middle cust. J. Geophys. Res. 104, 1,0795–1,0825.

  • Makovsky, Y., Klemperer, S.L., Ratschbacher, L., Brown, L., Ling, M., Zhao, W., and Meng, F. (1996), INDEPTH wide-angle reflection observation of P-wave-to S-wave conversion from crustal bright spots in Tibet, Science 274, 1690–1691.

  • Martínez, M.D., Lana, X., Canas, J.A., Badal, J., and Pujades, L. (2000), Shear-wave velocity tomography of the lithosphere-asthenosphere system beneath the Mediterranean area, Phys. Earth Planet. Inter. 122, 33–54.

  • Mishra, O.P., Zhao, D., and Singh, D.D. (2005), Northwest Pacific fundamental mode Rayleigh-wave group velocity and its relationship with tectonic structures, Bull. Seism. Soc. Am. 95, 2125–2135.

  • Mitra, S., Priestley, K., Gaur, V.K., Rai, S.S., and Haines, J. (2006), Variation of Rayleigh wave group velocity dispersion and seismic heterogeneity of the Indian crust and uppermost mantle, Geophys. J. Int. 164, 88–98.

  • Molnar, P. (1988), A review of geophysical constraints on the deep structure of the Tibetan plateau, the Himalaya, and the Karakoram, and their implications, Philos. Trans. Roy. Soc. London, A 326, 33–88.

  • Nelson, K.D., Zhao, W., Brown, L.D., Kuo, J., Chen, J., Lui, X., Klemperer, S.L., Makovsky, Y., Meissner, R., Mechie, J., Kind, R., Wenzel, F., Ni, J., Nabelek, J., Chen, L., Tan, H., Wei, W., Jones, A.G., Booker, J., Unsworth, M., Kidd, W.S.F., Hauck, M., Alsdorf, D., Ross, A., Cogan, M., Wu, C., Sandoval, E., and Edwards, M. (1996), Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH initial results, Science 274, 1684–1688.

  • Nishimura, C. and Forsyth, D. (1989), The anisotropic structure of the upper mantle in the Pacific, Geophys. J. Int. 96, 203–229.

  • Oliver, J. (1962), A summary of observed surface wave dispersion, Bull. Seism. Soc. Am. 52, 81–86.

  • Ozacar, A.A. and Zandt, G. (2004), Crustal seismic anisotropy in central Tibet: Implications for deformational style and flow in the crust, Geophys. Res. Lett. 31, L23601, doi:10.1029/2004GL021096.

  • Pasyanos, M.E. and Walter, W.R. (2001), A surface wave dispersion study of the Middle East and North Africa for monitoring the comprehensive Nuclear-Test-Ban Treaty, Pure Appl. Geophys. 158, 1445–1474.

  • Patton, H. (1980), Crustal and upper mantle structure of the Eurasian continent from the phase velocity and Q of surface waves, Rev. Geophys. Space Phys. 18, 605–625.

  • Pilidou, S., Priestley, K., Gudmundsson, Ó., and Debayle, E. (2004), Upper mantle S-wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomography: The Iceland and Azores plumes, Geophys. J. Int. 159, 1057–1076.

  • Priestley, K., Debayle, E., and McKenzie, D. (2006), Upper mantle structure of eastern Asia from multimode surface waveform tomography, J. Geophys. Res. 111(B10), B10304.

  • Priestley, K., Jackson, J., and McKenzie, D. (2008), Lithospheric structure and deep earthquakes beneath India, the Himalyaya and southern Tibet. Geophys. J. Int. 172, 345–362.

  • Rapine, R., Tilmann, F., West, M., and Ni, J. (2003), Crustal structure of northern and southern Tibet from surface wave dispersion analysis, J. Geophys. Res. 108, doi:10.1029/2001JB000445.

  • Raykova, R.B. and Nikolova, S.B. (2003), Anisotropy in the earth’s crust and uppermost mantle in southeastern Europe obtained from Rayleigh and Love surface waves, J. Appl. Geophys. 54, 247–256.

  • Ritzwoller, M.H. and Levshin, A.L. (1998), Eurasian surface wave tomography: group velocities. J. Geophys. Res. 103(B3), 4839–4878.

  • Ritzwoller, M.H., Levshin, A.L., Ratnikova, L.I., and Egorkin, A.A. (1998), Intermediate-period group-velocity maps across Central Asia, Western China and parts of the Middle East, Geophys. J. Int. 134, 315–328.

  • Ritzwoller, M.H., Shapiro, N.M., Levshin, A.L., and Leahy, G.M. (2001), Crustal and upper mantle structure beneath Antartica and the surrounding oceans, J. Geophys. Res. 106, 30645–30670.

  • Royden, L. (1996), Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust, J. Geophys. Res. 101, 17,679–17,705.

  • Royden, L.H., Burchfiel, B.C., King, R.W., Chen, Z., Shen, F., and Liu, Y. (1997), Surface deformation and lower crustal flow in eastern Tibet, Science 276, 788–790.

  • Shapiro, N.M. and Ritzwoller, M.H. (2002), Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle, Geophys. J. Int. 151, 88–105.

  • Shapiro, N.M., Ritzwoller, M.H., Molnar, P., and Levin, V. (2004), Thinning and flow of Tibetan crust constrained by seismic anisotropy, Science 305(9), 233–236.

  • Shen, F., Royden, L.H., and Burchfiel, B.C. (2001), Large-scale crustal deformation of the Tibetan Plateau, J. Geohys. Res. 106, B4, 6793–6816.

  • Sherrington, H.F. and Zandt, G. (2004), Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters, J. Geophys. Res. 109, JB02312.

  • Song, Z.H., An, C.Q., Chen, G.Y. Chen, L.H., Zhuang, Z., Fu, Z.W., Lu, Z.L., and Hu, J.F. (1991), Study on 3D velocity structure and anisotropy beneath west China from Love wave dispersion (in Chinese with abstract in English). Chinese J. Geophys. 34(6), 694–707.

  • Song, Z.H., Chen, G.Y., An, C.Q., Chen, L.H., Zhuang, Z., Fu, Z.W., Lv, Z.L., and Hu, J.F. (1993), Group velocity of Rayleigh waves beneath China mainland and its adjacent sea areas (in Chinese with abstract in English), Acta Seimologica Sinica, 34(6), 694–707.

  • Unsworth, M. (2002), The role of crustal fluids in strike-slip tectonics: New insights from magnetotelluric studies, Turkish J. Earth Sci. 11, 193–203.

  • Vdovin, O.Y., Rial, J.A., Levshin, A.L., and Ritzwoller, M.H. (1999), Group-velocity tomography of South America and the surrounding oceans, Geophys. J. Int. 136, 324–340.

  • Villaseňor, A., Ritzwoller, M.H., Levshin, A.L., Barmin, M.P., Engdahl, E.R., Spakman, W., and Trampert, J. (2001), Shear velocity structure of central Eurasia from inversion of surface wave velocities, Phys. Earth Plantet. Int. 123, 169–184.

  • Vuan, A., Robertson Maurice, S.D., Wiens, D.A., and Panza, G.F. (2005), Crustal and upper mantle S-wave velocity structure beneath the Bransfield Strait (West Antarctica) from regional surface wave tomography, Tectonophysics 397, 241–259.

  • Wei, W., Unsworth, M., Jones, A., Booker, J., and Tan, H. (2001), Detection of widespread fluids in the Tibetan crust by magnetotelluric studies, Science 292, 716–718.

  • Wessel, P. and Smith, W.H.F. (1995), New version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Un. 76, 329.

  • Wessel, P. and Smith, W.H.F. (1998), New improved version of Generic Mapping Tools released, EOS Trans. Am. Geophys. Un. 79, 579.

  • Wittlinger, G., Farra, V., and Vergne, J. (2004), Lithospheric and upper mantle stratifications beneath Tibet: New insights from Sp conversions, Geophys. Res. Lett. 31, L19615, doi:10.1029/2004Gl020955.

  • Wu, F.T. and Levshin, A.L. (1994), Surface wave tomography of China using surface waves at CDSN, Phys. Earth Planet Inter. 84, 59–77.

  • Wu, F.T., Levshin, A.L., and Kozhevnikov, V.M. (1997), Rayleigh wave group velocity tomography of Siberia, China, and the vicinity, Pure Appl. Geophys. 149, 447–473.

  • Xu, G., Li, G., Wang, S., Chen, H., and Zhou H. (2000), Inversion of Rayleigh wave data for 3-dimensional S-wave structure of crust and upper mantle in eastern China (in Chinese with abstract in English), Chinese J. Geophys. 34(3), 366–376.

  • Yang, X.N., Taylor, S.R., and Patton, H.J. (2004), The 20-s Rayleigh wave attenuation tomography for central and southeastern Asia, J. Geophys. Res. 109, B12304.

  • Yanovskaya, T. B. and Kozhevnikov, V. M. (2003), 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data, Phys. Earth Planet Inter. 138, 263–278.

  • Yanovskaya, T.B., Antonova, L.M. and Kozhevnikov, V.M. (2000), Lateral variations of the upper mantle structure in Eurasia from group velocity of surface waves, Phys. Earth Planet Inter. 122, 19–32.

  • Yanovskaya, T.B., Kizima, E.S., and Antonova, L.M. (1998), Structure of the crust in the Black Sea and adjoining regions from surface wave data, J. Seismol. 2, 303–316.

  • Yao, Z.X., Li, B.J., Liang, S.H., Zhu, P.D., and Zhang, L.M. (1983), On the group velocity of Rayleigh waves and the crustal structure of the Qinghai-Xizang Plateau (in Chinese with abstract in English), Chinese J. Geophys. 24(3), 287–295.

  • Yin, A., and Harrison, T.M. (2000), Geologic evolution of the Himalayan-Tibetan orogen, Ann. Rev. Earth Planet. Sci. 28, 211–280.

  • Yoshizawa, K. and Kennett, B.L.N. (2004), Multimode surface wave tomography for the Australian region using a three-stage approach incorporation finite frequency effects, J. Geophys. Res. 109, B02310, doi:10.1029/2002JB002254.

  • Zeng, R.S., Ding, Z.F., and Wu, Q.J. (1996), A review on the lithospheric structures in the Tibetan Plateau and constraints for dynamics, Pure Appl. Geophys. 145, 425–443.

  • Zhang, Z. and Klemperer, S.L. (2005), West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data, J. Geophys. Res. 110, B09403, doi:10.1029/2004JB003139.

  • Zhang, Z., Teng, J., Li, Y., Klemperer, S.L. and Yang, L. (2004), Crustal structure of seismic velocity in southern Tibet and east-westward escape of the crustal material: An example by wide-angle seismic profile from Peigu Tso to Pumoyong Tso, Science In China, Ser. D-Earth Sciences 47(6), 500-506.

  • Zhang, Z.J., Li, Y., Wang, G., Teng, J., Klemperer, S.L., Li, J., Fan, J., and Chen, Y. (2002), East-west crustal structure and “down-bowing” Moho under the northern Tibet revealed by wide-angle seismic profile, Science In China, Ser. D-Earth Sciences 45(6), 550–558.

  • Zhang, Z.M., Liou, J.G., and Coleman, R.G. (1984), An outline of the plate tectonics of China, Geol. Soc. Am. Bull. 95, 295–312.

  • Zhao, D.P. (2001), New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A review, The Island Arc 10, 68–84.

  • Zhou, B., Zhu, J.S., and Qing, J.Y. (1991), Three-dimensional shear velocity structure beneath the Qinghai-Tibet Plateau and its adjacent area (in Chinese with abstract in English), Chinese J. Geophys. 34(4), 426–441.

  • Zhuang, Z., Fu, Z.W., Lv, Z.L., Hu, J.F., Song, Z.H., Chen, G.Y., An, C.Q., and Chen, L.H. (1992), 3D shear velocity model of crust and upper mantle beneath the Tibetan Plateau and its adjacent regions (in Chinese with abstract in English), Chinese J. Geophys. 35(6), 694–709.

Download references

Acknowledgments

We are indebted to the data processing centres CDSN in China and IRIS in the United States for the facilities given for data acquisition. Helpful comments, suggestions and criticism from anonymous referees and the editor-in-charge Howard J. Patton, which led to significant improvement of the early manuscript, are gratefully acknowledged. Most of the graphic illustrations were produced using the Generic Mapping Tools (GMT) software by Wessel and Smith (1995, 1998). The National Natural Science Foundation of China (grants 40234044, and 40504012), the Ministry of Science and Technology of China (grant 2002CB412604), and the Knowledge Innovation Program of the Chinese Academy of Sciences supported this research. The present work profits by the Collaboration Agreement between the Institute of Geology and Geophysics, Chinese Academy of Sciences, and the University of Zaragoza, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Badal, J. & Hu, J. Love and Rayleigh Wave Tomography of the Qinghai-Tibet Plateau and Surrounding Areas. Pure Appl. Geophys. 167, 1171–1203 (2010). https://doi.org/10.1007/s00024-009-0040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-009-0040-1

Keywords

Navigation