Skip to main content
Log in

Predicting the overall properties of composite materials with small-scale inclusions or cracks

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

This paper will summarise the present state of knowledge concerning the elastic and dissipative properties of composite materials in the long wavelength or static approximation. In this case the material, although containing numerous inclusions or cracks or other types of microstructure, can be regarded as a continuum. Established results are listed for the elastic parameters following a review of approximate and exact methods of their derivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K., andChouet, B. (1975),Origin of Coda Waves: Source Attenuation and Scattering Effects, J. Geophys. Res.80, 3322–3342.

    Google Scholar 

  • Anderson, D. L., Minster, B., andCole, D. (1974),The Effect of Oriented Cracks on Seismic Velocities, J. Geophys. Res.79, 4011–4015.

    Google Scholar 

  • Batchelor, G. K., andGreen, J. T. (1972),The Determination of the Bulk Stress in a Suspension of Spherical Particles to Order c 2, J. Fluid Mech.56, 401–427.

    Google Scholar 

  • Beran, M. J., andMcCoy, J. J. (1970a),Mean-field Variations in a Statistical Sample of Heterogeneous Linearly Elastic Solids, Int. J. Solids Structures6, 1035–1054.

    Google Scholar 

  • Beran, M. J., andMcCoy, J. J. (1970b),The Use of Strain Gradient Theory for Analysis of Random Media, Int. J. Solids Structures6, 1267–1275.

    Google Scholar 

  • Bhatia, A. B. (1959),Scattering of High-frequency Sound Waves in Polycrystalline Materials, J. Acoust. Soc. Amer.31, 16–23.

    Google Scholar 

  • Biot, M. A. (1956),The Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid, J. Acoust. Soc. Amer.28, 168–191.

    Google Scholar 

  • Bonilla, L. L., andKeller, J. B. (1985),Acousto-elastic Effect and Wave Propagation in Heterogeneous, Weakly Anisotropic Materials, J. Mech. Phys. Solids33, 241–262.

    Google Scholar 

  • Budiansky, B. (1965),On the Elastic Moduli of Some Heterogeneous Materials, J. Mech. Phys. Solids13, 223–227.

    Google Scholar 

  • Budiansky, B., andO'Connell, R. J. (1979),Comment on ‘Elastic Moduli of Two Component Systems' by A. K. Chatterjee, A. K. Mal and L. Knopoff, J. Geophys. Res.84, 5687–5688.

    Google Scholar 

  • Burridge, R., andKeller, J. B. (1981),Poro-elasticity Equations Derived from Microstructure, J. Acoust. Soc. Amer.70, 1140–1146.

    Google Scholar 

  • Chatterjee, A. K., Mal, A. K., andKnopoff, L. (1978),Elastic Moduli of Two Component Systems, J. Geophys. Res.83, 1785–1792.

    Google Scholar 

  • Eshelby, J. D. (1957),The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. Roy. Soc. A241, 376–396.

    Google Scholar 

  • Garbin, H. D., andKnopoff, L. (1973),The Compressional Modulus of a Material Permeated by a Random Distribution of Circular Cracks, Qu. Appl. Math.30, 453–464.

    Google Scholar 

  • Hashin, Z. (1962),The Elastic Moduli of Heterogeneous Materials, J. Appl. Mech.29, 143–150.

    Google Scholar 

  • Hashin, Z., andShtrikman, S. (1962),A Variational Approach to the Theory of the Elastic Behaviour of Polycrystals, J. Mech. Phys. Solids10, 343–352.

    Google Scholar 

  • Hershey, A. V. (1954),The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals, J. Appl. Mech.21, 236–240.

    Google Scholar 

  • Hill, R. (1952),The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. London, A65, 349–354.

    Google Scholar 

  • Hill, R. (1963),Elastic Properties of Reinforced Solids: Some Theoretical Principles, J. Mech. Phys. Solids11, 357–372.

    Google Scholar 

  • Hill, R. (1965),A Self-consistent Mechanic of Composite Materials, J. Mech. Phys. Solids.13, 213–222.

    Google Scholar 

  • Hudson, J. A. (1980),Overall Properties of a Cracked Solid, Math. Proc. Camb. Phil. Soc.88, 371–384.

    Google Scholar 

  • Hudson, J. A. (1981),Wave Speeds and Attenuation of Elastic Waves in Material Containing Cracks, Geophys. J. R. Astr. Soc.64, 133–150.

    Google Scholar 

  • Hudson, J. A. (1986),A Higher Order Approximation to the Wave Propagation Constants for a Cracked Solid, Geophys. J. R. Astr. Soc.87, 265–274.

    Google Scholar 

  • Hunter, S. C.,Mechanics of Continuous Media, 2nd ed. (Ellis Horwood, Chichester 1983).

    Google Scholar 

  • Keller, J. B. (1964),Stochastic Equations and Wave Propagation in Random Media, Proc. Symp. Appl. Math.16, 145–170.

    Google Scholar 

  • Kröner, E. (1958),Berechnung der elastischen Konstanten des Vielkrystalls aus den Konstanten des Einkrystalls, Z. Phys.151, 504–518.

    Google Scholar 

  • Kröner, E. (1975),Elastostatik statistisch aufgebauter Körper, Z. Angew. Math. Mech.55, T39-T43.

    Google Scholar 

  • McCoy, J. J. (1973),On the Dynamic Response of Disordered Composites, J. Appl. Mech.39, 511–517.

    Google Scholar 

  • Nur, A., andSimmong, G. (1969),The Effect of Saturation on Velocity in Low-porosity Rocks, Earth Planet. Sci. Lett.7, 183–193.

    Google Scholar 

  • O'Connell, R. J., andBudiansky, B. (1974),Seismic Velocities in Dry and Saturated Cracked Solids, J. Geophys. Res.79, 5412–5426.

    Google Scholar 

  • O'Connell, R. J., andBudiansky, B. (1977),Viscoelastic Properties of Fluid-saturated Cracked Solids, J. Geophys. Res.82, 5719–5735.

    Google Scholar 

  • Reuss, A. (1929),Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech.9, 49–58.

    Google Scholar 

  • Varadan, V. K., andVaradan, V. V. (1979),Frequency Dependence of Elastic (SH-) Wave Velocity and Attenuation in Anisotropic Two-phase Media, Wave Motion1, 53–63.

    Google Scholar 

  • Varatharajulu, V., andPao, Y.-H. (1976),Scattering Matrix for Elastic Waves, I. Theory, J. Acoust. Soc Amer.60, 556–566.

    Google Scholar 

  • Voigt, W.,Lehrbuch der Kristallphysik (Teubner, Leipzig 1928).

    Google Scholar 

  • Walsh, J. (1969),A New Analysis of Attenuation in Partially Melted Rocks, J. Geophys. Res.74, 4333–4337.

    Google Scholar 

  • Waterman, P. C. (1968),New Formulation of Acoustic Scattering, J. Acoust. Soc. Amer.45, 1417–1429.

    Google Scholar 

  • Waterman, P. C., andTruell, R. (1961),Multiple Scattering of Waves, J. Math. Phys.2, 512–537.

    Google Scholar 

  • Watt, J. P., Davies, G. F., andO'Connell, R. J. (1976),The Elastic Properties of Composite Materials, Rev. Geophys. Space Phys.14, 541–563.

    Google Scholar 

  • Willis, J. R. (1977),Bounds and Self-consistent Estimates of the Overall Properties of Anisotropic Composites, J. Mech. Phys. Solids25, 185–202.

    Google Scholar 

  • Willis, J. R., andActon, J. R. (1976),The Overall Elastic Moduli of a Dilute Suspension of Spheres, Quart. J. Mech. Appl. Math.29, 163–177.

    Google Scholar 

  • Wu, R.-S. (1985),Multiple Scattering and Energy Transfer of Seismic Waves—Separation of Scattering Effect from Intrinsic Attenuation—I. Theoretical Modelling, Geophys. J. R. Astr. Soc.82, 57–80.

    Google Scholar 

  • Wu, R.-S., andAki, K. (1985),Elastic Wave Scattering by a Random Medium and the Small-scale Inhomogeneities in the Lithosphere, J. Geophys. Res.90, 10,261–10,273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, J.A., Knopoff, L. Predicting the overall properties of composite materials with small-scale inclusions or cracks. PAGEOPH 131, 551–576 (1989). https://doi.org/10.1007/BF00876264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876264

Key words

Navigation