Skip to main content
Log in

Co2+-doped diopside: crystal structure and optical properties

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Synthetic clinopyroxenes along the CaMgSi2O6–CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV–VIS–NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g4 T 2g(F), 4 T 1g4 A 2g(F) and 4 T 1g4 T 1g(P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g4 T 2g(F) and the 4 T 1g4 T 1g(P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm−1 is caused by the 4 A 2g4 T 1g(F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm−1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6–CaCoSi2O6 solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ardit M, Cruciani G, Dondi M (2012) Structural relaxation in tetrahedrally coordinated Co2+ along the gahnite-Co-aluminate spinel solid solution. Am Mineral 97:1394–1401

    Article  Google Scholar 

  • Ardit M, Dondi M, Cruciani G (2014) On the structural relaxation around Cr3+ along binary solid solutions. Eur J Mineral 26:359–370

    Article  Google Scholar 

  • Ballhausen CJ, Weiner MA (1963) Introduction to ligand field theory. J Electrochem Soc 110:97C-97C

    Article  Google Scholar 

  • Bosi F, Hålenius U, D’Ippolito V, Andreozzi GB (2012) Blue spinel crystals in the MgAl2O4–CoAl2O4 series: II. Cation ordering over short range and long range scales. Am Miner 97:1834–1840

    Article  Google Scholar 

  • Bruno E, Carbonin S, Molin GM (1982) Crystal structure of Ca-rich clinopyroxenes on the CaMgSi2O6-Mg2Si2O6 join. Tscher Mineral Petr Mitt 29:223–240

    Article  Google Scholar 

  • Burnham CW, Clark JR, Papike JJ, Prewitt CT (1967) A proposed crystallographic nomenclature for clinopyroxene structures. Zeits Krist 125:109–119

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press

  • D’Ippolito V, Andreozzi GB, Hålenius U, Skogby H, Hametner K, Günther (2015) Color mechanisms in spinel: cobalt and iron interplay for the blue color. Phys Chem Miner 42:431–439

    Article  Google Scholar 

  • Dondi M, Zanelli C, Ardit M, Cruciani G (2011) Co-Doped Hardystonite, Ca2(Zn, Co)Si2O7, a New Blue Ceramic Pigment. J Am Ceram Soc 94:1025–1030

    Article  Google Scholar 

  • Dondi M, Ardit M, Cruciani G, Zanelli C (2014) Tetrahedrally cooordinated Co2+ in oxides and silicates: effect of local environment on optical properties. Am Miner 99:1736–1745

    Article  Google Scholar 

  • Dou Y (1990) Equations for calculating Dq and B. J Chem Edu 67:134

    Article  Google Scholar 

  • Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  Google Scholar 

  • Ghose S, Wan C, Okamura FP (1987) Crystal structures of CaNiSi2O6 and CaCoSi2O6 and some crystal-chemical relations in C2/c clinopyroxenes. Am Miner 72:375–381

    Google Scholar 

  • Gori C, Tribaudino M, Mantovani L, Delmonte D, Mezzadri F, Gilioli E, Calestani G (2015) Ca-Zn solid solutions in C2/c pyroxenes: synthesis, crystal structure, and implications for Zn geochemistry. Am Miner 100:2209–2218

    Article  Google Scholar 

  • Gori C, Tribaudino M, Mantovani L, Gatta GD, Delmonte D, Mezzadri F, Gilioli E, Calestani G (2017) Synthesis and crystal structure of C2/c Ca(Co, Mg)Si2O6 pyroxenes: effect of the cationic substitution on the cell volume. Miner Mag 81:1129–1139

    Article  Google Scholar 

  • Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Miner 79:1032–1041

    Google Scholar 

  • Llusar M, Forés A, Badenes JA, Calbo J, Tena MA, Monrós G (2001) Colour analysis of some cobalt-based blue pigments. J Eur Ceram Soc 21:1121–1130

    Article  Google Scholar 

  • Mantovani L, Tribaudino M, Mezzadri F, Calestani G, Bromiley G (2013) The structure of (Ca,Co)CoSi2O6 pyroxenes and the Ca-M2+ substitution in (Ca,M2+)M2+Si2O6 pyroxenes (M2+= Co, Fe, Mg). Am Mineral 98:1241–1252

    Article  Google Scholar 

  • Mantovani L, Tribaudino M, Bertoni G, Salviati G, Bromiley G (2014) Solid solutions and phase transitions in (Ca,M2+)M2+Si2O6 pyroxenes (M2+ = Co, Fe, Mg). Am Miner 99:704–711

    Article  Google Scholar 

  • Mantovani L, Tribaudino M, Dondi M, Zanelli C (2015) Synthesis and color performance of CaCoSi2O6 pyroxene, a new ceramic colorant. Dyes Pigm 120:118–125

    Article  Google Scholar 

  • Masse S, Boch P, Vaissière N (1999) Trapping of nickel and cobalt in CaNiSi2O6 and CaCoSi2O6 diopside-like phases in heat-treated cement. J Eur Ceram Soc 19:93–98

    Article  Google Scholar 

  • Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  Google Scholar 

  • Ozel E, Yurdakul H, Turan S, Ardit M, Cruciani G, Dondi M (2010) Co-doped willemite ceramic pigments: Technological behaviour, crystal structure and optical properties. J Eur Ceram Soc 30:3319–3329

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Ross CR, Keppler H, Canil D, O’Neill HSC (1996) Structure and crystal-field spectra of Co3Al2 (SiO4)3 and (Mg, Ni)3Al2 (SiO4) 3 garnet. Am Miner 81:61–66

    Article  Google Scholar 

  • Rossi G, Oberti R, Dal Negro A, Molin GM, Mellini M (1987) Residual electron density of the M2 site in C2/c clinopyroxenes relationship with bulk chemistry and sub-solidus evolution. Phys Chem Miner 14:514–520

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1970) Revised values of effective ionic radii. Acta Crystallogr B 26:1046–1048

    Article  Google Scholar 

  • Sheldrick GM (1996) SADABS, program for empirical absorption correction of area detector data. University of Göttingen, Göttingen

    Google Scholar 

  • Sheldrick GM (1997) SHELXL-97, program for crystal structure analysis. University of Göttingen, Göttingen

    Google Scholar 

  • Tabira Y, Ishizawa N, Marumo F (1993) Cobalt atoms at M(2) site in C2/c clinopyroxenes of the system CaMgSi2O6 (Di)–CaCoSi2O6 (CaCoPx). Min J 16:225–245

    Article  Google Scholar 

  • Tanabe Y, Sugano S (1954) On the absorption spectra of complex ions. I and II. J Phys Soc Jpn 9:753–779

    Article  Google Scholar 

  • Taran MN, Rossman GR (2001) Optical spectra of Co2+ in three synthetic silicate minerals. Am Mineral 86:889–895

    Article  Google Scholar 

  • Taran MN, Ohashi H, Koch-Müller M (2008) Optical spectroscopic study of synthetic NaScSi2O6–CaNiSi2O6 pyroxenes at normal and high pressures. Phys Chem Miner 35:117–127

    Article  Google Scholar 

  • Taran MN, Koch-Müller M, Feenstra A (2009) Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures. Am Mineral 94:1647–1652

    Article  Google Scholar 

  • Tribaudino M, Ohashi H (2011) High temperature structure and thermal expansion of Co3Al2Si3O12 garnet. Periodico di Mineralogia 80:135–144

    Google Scholar 

  • Ullrich K, Ott O, Langer K, Becker KD (2004) Temperature dependence of the polarized electronic absorption spectra of olivines. Part II—cobalt-containing olivines. Phys Chem Miner 31:247–260

    Article  Google Scholar 

  • Underhill AE, Billing DE (1966) Calculations of the racah parameter B for nickel (II) and cobalt (II) compounds. Nature 210:834–835

    Article  Google Scholar 

  • White BW, McCarthy GJ, Scheetz BE (1971) Optical spectra of chromium, nickel, and cobalt-containing pyroxenes. Am Mineral 56:72–89

    Google Scholar 

Download references

Acknowledgements

We thank Michael Taran and an anonymous reviewer for comments that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1099 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gori, C., Tribaudino, M., Mezzadri, F. et al. Co2+-doped diopside: crystal structure and optical properties. Phys Chem Minerals 45, 443–461 (2018). https://doi.org/10.1007/s00269-017-0932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0932-z

Keywords

Navigation