Skip to main content
Log in

Mineralogy, Mössbauer spectra and electrical conductivity of triphylite Li(Fe2+,Mn2+) PO4

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The electrical conductivity of monocrystalline triphylite, Li(Fe2+,Mn2+)PO4, with the orthorhombic olivine-type structure was measured parallel (∥) to the [010] direction and ∥ [001] (space group Pnma), between ∼400 and ∼700 K. Electrical measurements on triphylite are of technological interest because LiFePO4 is a promising electrode material for rechargeable Li batteries. Triphylite was examined by electron microprobe, ICP atomic emission spectroscopy, X-ray diffraction, Mössbauer spectroscopy and microscopic analysis. The DC conductivity σDC was determined from AC impedance data (20 Hz–1 MHz) extrapolating to zero frequency. Triphylite shows σDC with activated behavior measured ∥ [010] between ∼500 and ∼700 K during the first heating up, with activation energy of E A = 1.52 eV; on cooling E A = 0.61 eV was found down to ∼400 K and extrapolated σDC (295 K) ∼10−9 Ω−1cm−1; ∥ [001] E A = 0.65 eV and extrapolated σDC(295 K) ∼10−9 to 10−10 Ω−1cm−1, measured during the second heating cycle. The enhanced AC conductivity relative to σDC at lower temperatures indicates a hopping-type charge transport between localized levels. Conduction during the first heating up is ascribed to ionic Li+ hopping. DC polarization experiments showed conduction after the first heating up to be electronic related to lowered activation energy. Electronic conduction appears to be coupled with the presence of Li+ vacancies and Fe3+, formed by triphylite alteration. For comparison, σDC was measured on the synthetic compound LiMgPO4 with olivine-type structure, where also an activated behavior of σDC with E A ∼1.45 eV was observed during heating and cooling due to ionic Li+ conduction; here no oxidation can occur associated with formation of trivalent cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amin R, Balaya P, Maier J (2007) Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem Solid-State Lett 10:A13–A16

    Article  Google Scholar 

  • Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97-98:498–502

    Article  Google Scholar 

  • Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130:41–52

    Article  Google Scholar 

  • Bohnke O, Emery J, Fourquet J-L (2003) Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor \((\hbox{Li}_{3x} \hbox{La}_{2/3-x} \square_{1/3-2x}) \hbox{TiO}_{3}.\) Solid State Ionics 158:119–132

    Article  Google Scholar 

  • Chung A-Y, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  Google Scholar 

  • Deganello S (1976) Study of the oxidation of triphylite in the range 20° to 900°C. Z Kristallogr 144:393–400

    Article  Google Scholar 

  • Deganello S (1978) The crystal structure of triphylite after oxidation to 670°C. N Jb Miner Mh H3:128–134

    Google Scholar 

  • Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J-B, Morcette M, Tarascon J-M, Masquelier C (2005b) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921

    Article  Google Scholar 

  • Delacourt C, Poizot P, Tarascon J-M, Masquelier C (2005a) The existence of a temperature-driven solid solution in Li x FePO4 for 0 ≤ x ≤ 1. Nat Mater 4:254–260

    Article  Google Scholar 

  • Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233

    Article  Google Scholar 

  • Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–218

    Article  Google Scholar 

  • Finger LW, Rapp GR Jr (1970) Refinement of the crystal structure of triphylite. Carnegie Inst Year Book, Annual Report of the Director of the Geophysical Lab 68:290–292

  • Fontan F, Huvelin P, Orliac M, Permingeat F (1976) La ferrisicklérite des pegmatites de Sidi Bou Othmane (Jebilet, Maroc) et le groupe des minéraux à structure de triphylite. Bull Soc fr Minéral Cristallogr 99:274–286

    Google Scholar 

  • Fransolet A-M, Antenucci D, Speetjens J-M, Tarte P (1984) An X-ray determinative method for the divalent cation ratio in the triphylite-lithiophilite series. Mineral Mag 48:373–381

    Article  Google Scholar 

  • Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Cryst 13:325–331

    Article  Google Scholar 

  • Goni A, Bonagamba TJ, Silva MA, Panepucci H, Rojo T, Barberis GE (1998) 7Li and 31P nuclear magnetic resonance studies of Li1-3x MgFe x PO4. J Appl Phys 84:416–421

    Article  Google Scholar 

  • Goni A, Lezama L, Pujana A, Arriortura MI, Rojo T (2001) Clustering of Fe3+ in the Li1-3x Fe x MgPO4 (0 < × < 0.1) solid solution. Int Inorg Mater 3:937–942

    Article  Google Scholar 

  • Gossner B, Strunz H (1932) Über strukturelle Beziehungen zwischen Phosphaten (Triphylin) und Silikaten (Olivin) und über die chemische Zusammensetzung von Ardennit. Z Kristallogr 83:415–421

    Google Scholar 

  • Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  Google Scholar 

  • Keller P (1974) Phosphatmineralien aus Pegmatiten Südwestafrikas. Der Aufschluss 25:578–591

    Google Scholar 

  • Laumann A (2005) Kristallchemie von Triphyline - Lithiophylit Mischkristallen. Diploma Thesis, Universität München

  • Li Z, Shinno I (1997) Next nearest neighbor effects in triphylite and related phosphate minerals. Mineralo J 3:99–107

    Article  Google Scholar 

  • Lin Z, Dang D, Liu M, Sui Y, Su W, Qian Z, Li Z (2005) Quadrupole splitting distributions in purpurite and related minerals. Hyperfine Inter 163:13–27

    Google Scholar 

  • Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31:553–637

    Article  Google Scholar 

  • Macdonald JR (1987) Impedance spectroscopy. Wiley, New York, p 346

  • Macdonald JR (2005) Impedance spectroscopy: models, data fitting, and analysis. Solid State Ionics 176:1961–1969

    Article  Google Scholar 

  • Malló A, Fontan F, Melgarejo J-C, Mata JM (1995) The Albera zoned pegmatite field, Eastern Pyrenees, France. Mineral Petrol 55:103–116

    Article  Google Scholar 

  • Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  • Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97-98:430–432

    Article  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997a) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613

    Article  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough JB (1997b) Phospho-olivines as positive materials for rechargable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  • Pouchu L, Pichoir F (1984) A new model for quantitative X-ray micro-analysis. Part I: Application to the analysis of homogeneous samples. Rech Aerospat 3:13–38

    Google Scholar 

  • Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148:45–51

    Article  Google Scholar 

  • Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507

    Article  Google Scholar 

  • Ravet N, Abouimrane A, Armand M (2003) On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nat Mater 2:702

    Article  Google Scholar 

  • Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B98:185–189

    Article  Google Scholar 

  • Rodriguez-Carvajal J (1990) A program for Rietveld refinement and patters matching analysis. Abstracts of the satellite meeting on powder diffraction of the 15th Congress of the IUCR, Toulouse, p 127

  • Santoro RP, Newnham RE (1967) Antiferromagnetism in LiFePO4. Acta Crystallogr 22:344–347

    Article  Google Scholar 

  • Shi S, Liu L, Ouyang Ch, Wang D, Wang Z, Chen L, Huang X (2003) Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first principles calculations. Phys Rev B68:195108-1–195108-5

    Google Scholar 

  • Shigley JE, Brown GE Jr (1986) Lithiophilite formation in granitic pegmatites: a reconnaissance experimental study of phosphate crystallization from hydrous aluminosilicate melts. Am Mineral 71:356–366

    Google Scholar 

  • Song Y, Yang S, Zavalij PY, Whittingham MS (2002) Temperature-dependent properties of FePO4 cathode materials. Mater Res Bull 37:1249–1257

    Article  Google Scholar 

  • Takahashi M, Tobishima Sh, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283–289

    Article  Google Scholar 

  • Xu Y-N, Chung S-Y, Bloking JT, Chiang Y-M, Ching WY (2004) Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem Solid-State Lett 7:A131–A134

    Article  Google Scholar 

  • Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Reactivity, stability and electrochemical behaviour of lithium iron phosphates. Electrochem Commun 4:239–244

    Google Scholar 

  • Yang S, Song Y, Ngala K, Zavalij PY, Whittingham MS (2003) Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides. J Power Sources 119-121:239–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schmidbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehr, K.T., Hochleitner, R., Schmidbauer, E. et al. Mineralogy, Mössbauer spectra and electrical conductivity of triphylite Li(Fe2+,Mn2+) PO4 . Phys Chem Minerals 34, 485–494 (2007). https://doi.org/10.1007/s00269-007-0164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0164-8

Keywords

Navigation