Skip to main content
Log in

Crystal structural features of the olivine → spinel transition

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Comparisons of structural features of olivine (α phase), spinel (γ phase), and the modified spinel (β phase) lead to predictions of possible mechanisms for the olivine → spinel transitions. In the olivine structure, rigid tetrahedral edges and shared octahedral edges form columns of corner-sharing trigonal dipyramids parallel to the a axis. These rigid columns are separated by weaker, unshared octahedral edges which may be stretched to reduce cation-cation repulsion. As a result, olivine has a relatively loose structure and is stable at low pressure. At elevated pressure, olivine transforms to the more compact spinel structure, in which the rigid tetrahedral edges and shared octahedral edges form a three dimensional network instead of aligned columns. These structural differences explain how compressibility and thermal expansion may be taken up mainly by octahedral sites in olivine, but are evenly distributed over both octahedral and tetrahedral sites in spinel.

Because the closest packings of oxygens and interstitial cation distributions differ between olivine (h.c.p.) and spinel (c.c.p.), the olivine structure may have to disintegrate during its transformation to spinel, so that the olivine → spinel transition involves processes of nucleation and growth. The migration of atoms across the olivine-spinel interface is thus a complicated process of random walk without a definite path. In the β phase → spinel transition, however, the diffusion of cations may follow a definite path in restricted regions because oxygen closest packings and cation distributions are similar in the two structures. If the oxygen packing remains intact during the β → γ transition, the transformation will be an intracrystalline process leading to domain structure in the spinel product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, S., Fujisawa, H.: Olivine-spinel solution equilibria in the system Mg2SiO4 - Fe2SiO4. J. Geophys. Res. 73, 1467–1479 (1968)

    Google Scholar 

  • Baur, W.H.: Geometry refinement of the crystal structure of β-Mg2SiO4. Nature Phys. Sci. 233, 135–137 (1971)

    Google Scholar 

  • Baur, W.H.: Computer-simulated crystal structures of observed and hypothetical Mg2SiO4 polymorphs of low and high density. Amer. Mineral. 57, 709–731 (1972)

    Google Scholar 

  • Bernal, J.D.: Discussion. Observatory 59, 268 (1936)

    Google Scholar 

  • Birle, J.D., Gibbs, G.V., Moore, P.B., Smith, J.V.: Crystal structures of natural olivines. Amer. Mineral. 53, 807–824 (1968)

    Google Scholar 

  • Boyd, F.R., England, J.L.: The fayalite-Fe2SiO4 spinel transition. Carnegie Inst., Washington, Year Book 59, 48–49 (1960)

    Google Scholar 

  • Bradley, R.S., Grace, J.D., Munro, D.C.: The electrical conductivity of some organic and inorganic solids under pressure: 2, Ferrous orthosilicate and spinel Fe2SiO4. In: Physics and Chemistry of High Pressure: London: Society of Chemical Industry 1963, pp. 143–149

    Google Scholar 

  • Brown, G.E.: Crystal chemistry of the olivines. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1970)

    Google Scholar 

  • Buerger, M.J.: Crystallographic aspects of phase transformation. In: Phase Transformations in Solids: Smoluchowski et al. (eds.). New York: John Wiley, pp. 183–209

  • Burger, W.G.: On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561–586 (1934)

    Google Scholar 

  • Burns, R.G., Sung, C.M.: Crystal field stabilization energy of the olivine-spinal transition in the Mg2SiO4 - Fe2SiO4 system: a re-evaluation. EOS, Trans. Am. Geophys. Union 57, 1020 (1976)

    Google Scholar 

  • Burns, R.G., Sung, C.-M.: The effect of crystal field stabilization on the olivine → spinel transition in the system Mg2SiO4 - Fe2SiO4. Phys. Chem. Minerals, accepted for publication (1978)

  • Dachille, F., Roy, R.: High pressure studies of the system Mg2SiO4- Fe2SiO4 with special reference to the olivine-spinel transition. Am. J. Sci. 258, 225–246 (1960)

    Google Scholar 

  • Dempsey, M.J., Strens, R.G.J.: Modelling crystal structures. In: The Physics and Chemistry of Minerals and Rocks, Strens, R.G.J. (ed.). New York: J. Wiley & Sons 1976, pp. 443–458

    Google Scholar 

  • Finger, L.W.: Fe/Mg ordering in olivines. Carnegie Inst. Washington, Year Book 69, 302–305 (1970)

    Google Scholar 

  • Finger, L.W., Hazen, R.M., Yagi, T.: High pressure crystal structures of the spinel polymorphs of Fe2SiO4 and Ni2SiO4. Carnegie Inst., Washington, Year Book 76, in press (1977)

  • Fisher, G.W., Medaris, Jr., L.G.: Cell dimensions and X-ray determinative curve for synthetic Mg - Fe olivine. Amer. Mineral. 54, 741–753 (1969)

    Google Scholar 

  • Goetze, C., Kohlstedt, D.L.: Laboratory study of dislocation climb and diffusion in olivine. J. Geophys. Res. 78, 5961–5971 (1973)

    Google Scholar 

  • Goldschmidt, V.M.: Zur Kristallchemie des Germaniums. Nachr. Akad. Wiss. Göttingen Math. Physik. Kl. 1, No. 2, 184–190 (1931)

    Google Scholar 

  • Hanke, K.: Beiträge zu Kristallstrukturen vom Olivin. Typ. Beitr. Mineral. Petrog. 11, 535–558 (1965)

    Google Scholar 

  • Hazen, R.M.: Effect of temperature and pressure on the crystal physics of olivine. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1975)

    Google Scholar 

  • Hazen, R.M.: Effect of temperature and pressure on the crystal structure of forsterite. Amer. Mineral. 61, 1280–1293 (1976)

    Google Scholar 

  • Hazen, R.M.: Effect of temperature and pressure on the crystal structure of ferromagnesium olivine. Amer. Mineral. 62, 286–295 (1977)

    Google Scholar 

  • Ito, E., Matsui, Y., Suito, K., Kawai, N.: Synthesis of γ-Mg2SiO4. Phys. Earth Planet. Inter. 8, 342–344 (1974)

    Google Scholar 

  • Kamb, B.: Structural basis of the olivine-spinel stability relation. Amer. Mineral. 53, 1439–1455 (1968)

    Google Scholar 

  • Mao, H.K., Takahashi, T., Bassett, W.A., Weaver, J.S., Akimoto, S.: Effect of pressure and temperature on the molar volumes of wustite and of three (Fe,Mg)2SiO4 spinel solid solutions. J. Geophys. Res. 74, 1061–1069 (1969)

    Google Scholar 

  • Misener, D.J.: Cation diffusion in olivine to 1400° C and 35 Kbars. In: Geochemical Transport and Kinetics, Hoffmann, A.W. et al. (eds.), New York: Academic Press 1975, pp. 117–128

    Google Scholar 

  • Mizukami, S., Ohtani, A., Kawai, N.: High-pressure X-ray diffraction studies on β- and γ-Mg2SiO4. Phys. Earth Planet. Inter. 8, 177–182 (1975)

    Google Scholar 

  • Moore, P.B., Smith, J.V.: Crystal structure of β-Mg2SiO4: crystal-chemical and geophysical implications. Phys. Earth Planet. Inter. 3, 166–177 (1970)

    Google Scholar 

  • Morimoto, N., Tokonami, M., Watanabe, M., Koto, K.: Crystal structures of three polymorphs of Co2SiO4. Amer. Mineral. 59, 475–485 (1974)

    Google Scholar 

  • O'Hara, M.J.: Upper mantle composition inferred from laboratory experiments and observation of volcanic products. Phys. Earth Planet. Inter. 3, 236–245 (1970)

    Google Scholar 

  • Ringwood, A.E.: The constitution of the mantle. II. Further data on the olivine-spinel transition. Geochim. Cosmochim. Acta 15, 18–29 (1958)

    Google Scholar 

  • Ringwood, A.E.: Phase transformations and the constitution of the mantle. Phys. Earth Planet. Inter. 3, 109–155 (1970)

    Google Scholar 

  • Ringwood, A.E.: Phase transformations and mantle dynamics. Earth Planet. Sci. Lett. 14, 233–241 (1972)

    Google Scholar 

  • Ringwood, A.E.: Phase transformations and their bearing on the dynamics of the mantle. Fortschr. Mineral. 50, 113–139 (1973)

    Google Scholar 

  • Ringwood, A.E.: Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill 1975

    Google Scholar 

  • Ringwood, A.E.: Phase transformations in descending plates and implications for mantle dynamics. Tectonophysics 32, 129–143 (1976)

    Google Scholar 

  • Ringwood, A.E., Major, A.: Some high-pressure transformations: synthesis of Mg2SiO4 - Fe2SiO4 solid solutions. Earth Planet. Sci. Lett. 1, 241–245 (1966)

    Google Scholar 

  • Ringwood, A.E., Major, A.: The system Mg2SiO4 - Fe2SiO4 at high pressures and temperatures. Phys. Earth Planet. Inter. 3, 89–108 (1970)

    Google Scholar 

  • Roy, R.: A syncretist classification of phase transitions. In: Phase Transitions, Herrisch, H.K. et al. (eds.). New York: Pergamon Press 1973

    Google Scholar 

  • Sato, Y.: Equation of state of mantle minerals determined through high pressure X-ray study. High Pressure Research and its Applications in Geophysics, Manghnam, M., and Akimoto, S. (eds.). New York: Academic Press Inc. 1977, pp. 307–323

    Google Scholar 

  • Schubert, G., Yuen, D.A., Turcotte, D.L.: Role of phase transitions in a dynamic mantle. Geophys. J. Roy Astron. Soc. 42, 705–735 (1975)

    Google Scholar 

  • Smyth, J.R.: High temperature crystal chemistry of fayalite. Amer. Mineral. 60, 1092–1097 (1975)

    Google Scholar 

  • Smyth, J.R., Hazen, R.M.: The crystal structures of forsterite and hortonolite at several temperatures up to 900° C. Amer. Mineral. 58, 588–593 (1973)

    Google Scholar 

  • Suito, K.: Phase transformations of pure Mg2SiO4 into a spinel structure under high pressure and temperatures. J. Phys. Earth 20, 225–243 (1972)

    Google Scholar 

  • Sung, C.M.: The nature of the olivine-spinel transition in the Mg2SiO4 - Fe2SiO4 system and its geophysical implications. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1976a)

    Google Scholar 

  • Sung, C.M.: Kinetics of the olivine-spinel transition in the system Mg2SiO4- Fe2SiO4: experimental results and geophysical implications. EOS Trans. Am. Geophys. Union 57, 1020 (1976b)

    Google Scholar 

  • Sung, C.M., Burns, R.G.: Kinetics of high pressure phase transformations: implications to the evolution of the olivine-spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics 31, 1–32 (1976a)

    Google Scholar 

  • Sung, C.M., Burns, R.G.: Kinetics of the olivine-spinel transition: implications to deep earthquake genesis. Earth Planet. Sci. Lett. 32, 165–170 (1976b)

    Google Scholar 

  • Tokonami, M., Morimoto, N., Akimoto, S., Syono, Y., Takeda, H.: Stability relations between olivine, spinel, and modified spinel. Earth Planet. Sci. Lett. 14, 65–69 (1972)

    Google Scholar 

  • Turcotte, D.L., Schubert, G.: Structure of the olivine-spinel phase boundary in the descending lithosphere. J. Geophys. Res. 76, 7980–7987 (1971)

    Google Scholar 

  • Wenk, H.R., Raymond, K.N.: Four new structure refinements of olivine. Z. Kristallogr. 137, 86–105 (1973)

    Google Scholar 

  • Wentorf, R.H.: Olivine-spinel transformation. Nature 183, 1617 (1959)

    Google Scholar 

  • Yagi, T., Marumo, F., Akimoto, S.: Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4, Amer. Mineral. 59, 486–490 (1974)

    Google Scholar 

  • Yagi, T., Ida, Y., Sato, Y., Akimoto, S.: Effect of hydrostatic pressure on the lattice parameters of Fe2SiO4 olivine up to 70 kbar. Phys. Earth Planet. Inter. 10, 348–354 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, CM., Burns, R.G. Crystal structural features of the olivine → spinel transition. Phys Chem Minerals 2, 177–197 (1978). https://doi.org/10.1007/BF00308172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308172

Keywords

Navigation