Skip to main content
Log in

Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The kinetic energy (KE) seasonality has been revealed by satellite altimeters in many oceanic regions. Question about the mechanisms that trigger this seasonality is still challenging. We address this question through the comparison of two numerical simulations. The first one, with a 1/10° horizontal grid spacing, 54 vertical levels, represents dynamics of physical scales larger than 50 km. The second one, with a 1/30° grid spacing, 100 vertical levels, takes into account the dynamics of physical scales down to 16 km. Comparison clearly emphasizes in the whole North Pacific Ocean, not only a significant KE increase by a factor up to three, but also the emergence of seasonal variability when the scale range 16–50 km (called submesoscales in this study) is taken into account. But the mechanisms explaining these KE changes display strong regional contrasts. In high KE regions, such the Kuroshio Extension and the western and eastern subtropics, frontal mixed-layer instabilities appear to be the main mechanism for the emergence of submesoscales in winter. Subsequent inverse kinetic energy cascade leads to the KE seasonality of larger scales. In other regions, in particular in subarctic regions, results suggest that the KE seasonality is principally produced by larger-scale instabilities with typical scales of 100 km and not so much by smaller-scale mixed-layer instabilities. Using arguments from geostrophic turbulence, the submesoscale impact in these regions is assumed to strengthen mesoscale eddies that become more coherent and not quickly dissipated, leading to a KE increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The MLD is defined as the depth at which potential density is different from the sea surface density by 0.03 σ θ .

References

  • Boccaletti G, Ferrari R, Fox-Kemper B (2007) Mixed layer instabilities and restratification. J Phys Oceanogr 37(9):2228–2250

    Article  Google Scholar 

  • Buckingham CE, Naveira Garabato AC, Thompson AF, Brannigan L, Lazar A, Marshall DP, George Nurser AJ, Damerell G, Heywood KJ, Belcher SE (2016) Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys Res Lett 43(5):2118–2126

    Article  Google Scholar 

  • Callies J, Ferrari R, Klymak JM, Gula J (2015) Seasonality in submesoscale turbulence. Nat Commun 6:6862. doi:10.1038/ncomms7862

    Article  Google Scholar 

  • Callies J, Flierl G, Ferrari R, Fox-Kemper B (2016) The role of mixed-layer instabilities in submesoscale turbulence. J Fluid Mech 788:5–41

    Article  Google Scholar 

  • Capet X, Campos EJ, Paiva M (2008a) Submesoscale activity over the Argentinian shelf. Geophys Res Lett 35:2–6

    Article  Google Scholar 

  • Capet X, Klein P, Hua BL, Lapeyre G, Mcwilliams JC (2008b) Surface kinetic energy transfer in surface quasi-geostrophic flows. J Fluid Mech 604:165–174

    Article  Google Scholar 

  • Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008c) Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. J Phys Oceanogr 38(10):2256–2269

    Article  Google Scholar 

  • Capet X, Roullet G, Klein P, Maze G (2016) Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J Phys Oceanogr 46(11):3365–3384

    Article  Google Scholar 

  • Chen R, Flierl GR, Wunsch C (2014) A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J Phys Oceanogr 44(9):2336–2352

    Article  Google Scholar 

  • Chen R, Thompson AF, Flierl GR (2016) Time-dependent eddy-mean energy diagrams and their application to the ocean. J Phys Oceanogr 46(9):2827–2850

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003

    Article  Google Scholar 

  • Dufau C, Orsztynowicz M, Dibarboure G, Morrow R, Le Traon PY (2016) Mesoscale resolution capability of altimetry: present and future. J Geophys Res Oceans 121(7):4910–4927

    Article  Google Scholar 

  • Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, souces and sinks. Ann Rev Fluid Mech 41(1):253–282

    Article  Google Scholar 

  • Fox-Kemper B, Ferrari R, Hallberg R (2008) Parameterization of mixed layer eddies. Part I: theory and diagnosis. J Phys Oceanogr 38(6):1145–1165

    Article  Google Scholar 

  • Haines T, Marshall JC (1998) Gravitational, symmetric and baroclinic instability of the ocean mixed-layer. J Phys Oceanogr 28(4):634–658

    Article  Google Scholar 

  • Hakim GJ, Snyder C, Muraki DJ (2002) A new surface model for cyclone–anticyclone asymmetry. J Atmos Sci 59(16):2405–2420

    Article  Google Scholar 

  • Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate: observing and modelling the global ocean. Academic, San Diego, pp 373–386

    Chapter  Google Scholar 

  • Hautala SL, Roemmich DH (1998) Subtropical mode water in the Northeast Pacific Basin. J Geophys Res Oceans 103(C6):13055–13066

    Article  Google Scholar 

  • Haza AC, Ozgökmen TM, Griffa A, Garaffo ZD, Piterbarg L (2012) Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Model 42:31–49

    Article  Google Scholar 

  • Held IM, Pierrehumbert RT, Garner ST, Swanson KL (1995) Surface quasigeostrophic dynamics. J Fluid Mechan 282:1–20

    Article  Google Scholar 

  • Joseph B, Legras B (2002) Relation between kinematic boundaries, stirring and barriers for the Antartic polar vortex. J Atmos Sci 59:1198–1212

    Article  Google Scholar 

  • Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375

    Article  Google Scholar 

  • Klein P, Hua BL, Lapeyre G, Capet X, Le Gentil S, Sasaki H (2008) Upper ocean turbulence from high-resolution 3D simulations. J Phys Oceanogr 38:1748–1763

    Article  Google Scholar 

  • Komori N, Takahashi K, Komine K, Motoi T, Zhang X, Sagawa G (2005) Description of sea-ice component of coupled ocean sea-ice model for the earth simulator (oifes). J Earth Simul 4:31–45

    Google Scholar 

  • Lapeyre G (2002) Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence. Chaos 12:688–698

    Article  Google Scholar 

  • Lapeyre G, Klein P, Hua BL (1999) Does the tracer gradient vector align with the strain eigenvectors in 2-D turbulence? Phys Fluids 11:3729–3737

    Article  Google Scholar 

  • Lapeyre G, Klein P, Hua BL (2006) Oceanic restratification forced by surface frontogenesis. J Phys Oceanogr 36(8):1577–1590

    Article  Google Scholar 

  • Lévy M, Ferrari R, Franks PJS, Martin AP, Rivière P (2012a) Bringing physics to life at the submesoscale. Geophys Res Lett 39(14):L14602. doi:10.1029/2012GL052756

    Article  Google Scholar 

  • Lévy M, Resplandy L, Klein P, Capet X, Iovino D, Éthé C (2012b) Grid degradation of submesoscale resolving ocean models: benefits for offline passive tracer transport. Ocean Model 48:1–9

    Article  Google Scholar 

  • Masumoto Y et al (2004) A fifty-year eddy-resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simul 1:35–56

    Google Scholar 

  • McWilliams JC (2016) Submesoscale currents in the ocean. Proc R Soc A 472:20160117

    Article  Google Scholar 

  • McWilliams JC, Colas F, Molemaker MJ (2009) Cold filamentary intensification and oceanic surface convergence lines. Geophys Res Lett 36:1–5

    Article  Google Scholar 

  • Mensa JA, Garraffo Z, Griffa A, Özgökmen TM, Haza A, Veneziani M (2013) Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn 63:923–941

    Article  Google Scholar 

  • Nakamura N (1988) Scale selection of baroclinic instability—effects of stratification and nongeostrophy. J Atmos Sci 45(21):3253–3268

    Article  Google Scholar 

  • Noh Y, Kim HJ (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res Oceans 104(C7):15621–15634

    Article  Google Scholar 

  • Nonaka M, Sasai Y, Sasaki H, Taguchi B, Nakamura H (2016) How potentially predictable are midlatitude ocean currents? Sci Rep 6:20153. doi:10.1038/srep20153

    Article  Google Scholar 

  • Onogi K et al (2007) The jra-25 reanalysis. J Met Soc Jap 85(3):369–432

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1999) The MOM 3 manual, GFDL Ocean Group Tech. Rep. 4, 680 pp., NOAA/Geophys Fluid Dyn Lab, Princeton

  • Pierrehumbert RT, Held IM, Swanson KL (1994) Spectra of local and non-local two-dimensional turbulence. Chaos 4:1111–1116

    Google Scholar 

  • Qiu B (1999) Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/POSEIDON observations and theory. J Phys Oceanogr 29(10):2471–2486

    Article  Google Scholar 

  • Qiu B, Scott R, Chen S (2008) Length scales of eddy generation and nonlinear evolution of the seasonally-modulated South Pacific Subtropical Countercurrent. J Phys Oceanogr 38(7):1515–1528

    Article  Google Scholar 

  • Qiu B, Chen S, Klein P, Sasaki H, Sasai Y (2014) Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J Phys Oceanogr 44(12):3079–3098

    Article  Google Scholar 

  • Roullet G, McWilliams JC, Capet X, Molemaker MJ (2012) Properties of steady geostrophic turbulence with isopycnal outcropping. J Phys Oceanogr 42(1):18–38

    Article  Google Scholar 

  • Sasaki H, Klein P (2012) SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J Phys Oceanogr 42(7):1233–1241

    Article  Google Scholar 

  • Sasaki H, Klein P, Qiu B, Sasai Y (2014) Impact of oceanic scale-interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat Commun 5:5636. doi:10.1038/ncomms6636

    Article  Google Scholar 

  • Stone PH (1966) On non-geostrophic baroclinic instability. J Atmos Sci 23:3253–3268

    Google Scholar 

  • Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34(1):3–22

    Article  Google Scholar 

  • Thompson AF, Lazar A, Buckingham C, Naveira Garabato AC, Damerell GM, Heywood KJ (2016) Open-ocean submesoscale motions: a full seasonal cycle of mixed layer instabilities from gliders. J Phys Oceanogr 46(4):1285–1307

    Article  Google Scholar 

  • Tulloch R, Marshall J, Hill C (2011) Scales, growth rates and spectral fluxes of baroclinic instability in the ocean. J Phys Oceanogr 41(6):1057–1076

    Article  Google Scholar 

  • Vallis GK (2006) Atmospheric and oceanic fluid dynamics. Cambridge University Press, 745 pp

  • Zhai X, Greatbatch RJ, Kohlmann JD (2008) On the seasonal variability of eddy kinetic energy in the Gulf Stream region. Geophys Res Lett 35(24):L24609. doi:10.1029/2008GL036412

    Article  Google Scholar 

  • Zhong Y, Bracco A (2013) Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J Geophys Res 118(10):5651–5668

    Article  Google Scholar 

Download references

Acknowledgements

The simulations were performed on the Earth Simulator under support of JAMSTEC. H.S. is supported by CANON Foundation. P.K. acknowledges the support of IFREMER (through the MOU IFREMER-JAMSTEC), CNRS (France), and the Agence Nationale pour la Recherche [Contract ANR-10-LABX-19-01 (LabexMER)]. B.Q. acknowledges Science Team support from NASA’s SWOT mission NNX16AH66G. We appriciate comments from two reviewers, that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideharu Sasaki.

Additional information

Responsible Editor: Ananda Pascual

This article is part of the Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23–27 May 2016

P. Klein is presently a visiting scientist at Caltech/JPL, Pasadena, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, H., Klein, P., Sasai, Y. et al. Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dynamics 67, 1195–1216 (2017). https://doi.org/10.1007/s10236-017-1083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1083-y

Keywords

Navigation