Skip to main content

Advertisement

Log in

Altimetric Lagrangian advection to reconstruct Pacific Ocean fine-scale surface tracer fields

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

In past studies, Lagrangian stirring of surface tracer fields by altimetric surface geostrophic currents has been performed in different mid- to high-latitude regions, showing good results in reconstructing finer scale tracer patterns. Here, we explore the pertinence of the technique in the western equatorial Pacific and in the subtropical southwest Pacific. Initial conditions are derived from weekly gridded low-resolution temperature and salinity fields based on in situ hydrographic data. Validation of the reconstructed fine-scale surface tracer fields is performed using satellite AMSRE Sea Surface Temperature data and high-resolution ship thermosalinograph data. We test two kinds of Lagrangian advection. The standard one-way advection leads to an increased error as the advection time increases, due to the missing physics, such as air-sea fluxes or non-geostrophic dynamics. A second “backward-forward” advection technique is explored to reduce this bias in the tracer field, with improved results. In the subtropical southwest Pacific Ocean, the mesoscale temperature and salinity fronts are well represented by both Lagrangian advection techniques over a short 7- to 14-day advection time, including westward-propagating features not apparent in the initial fields. In the tropics, the results are less clear. The validation is hampered by the complex vertical stratification, and the lateral stirring technique is limited by the pertinence of using geostrophic surface current fields in the tropics. We suggest that the passive lateral stirring technique is efficient in regions with moderate to high mesoscale energy, where mesoscale surface tracer and surface height fields are correlated. In other regions, more complex dynamical processes may need to be included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abernathey RP, Marshall J (2013) Global surface eddy diffusivities derived from satellite altimetry. J Geophys Res Oceans 118:901–916. doi:10.1002/jgrc.20066

    Article  Google Scholar 

  • Autret E (2014) Analyse des champs de température de surface de la mer à partir d’observations satellite multi-sources

  • Berti S, Lapeyre G (2014) Lagrangian reconstructions of temperature and velocity in a model of surface ocean turbulence. Ocean Model 76:59–71. doi:10.1016/j.ocemod.2014.02.003

    Article  Google Scholar 

  • Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114, C06023. doi:10.1029/2008JC005187

    Google Scholar 

  • Boutin J, Martin N, Reverdin G et al (2014) Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations. J Geophys Res Oceans 119:5533–5545. doi:10.1002/2014JC010070

    Article  Google Scholar 

  • Cravatte S, Delcroix, Zhang D, et al. (2009) Observed freshening and warming of the western Pacific warm pool. doi: 0.1007/s00382-009-0526-7

  • Cravatte S, Kessler WS, Marin F (2012) Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J Phys Oceanogr 42:1475–1485. doi:10.1175/JPO-D-11-0206.1

    Article  Google Scholar 

  • Delcroix T, Picaut J (1998) Zonal displacement of the western equatorial Pacific “fresh pool”. J Geophys Res 103:1087–1098. doi:10.1029/97JC01912

    Article  Google Scholar 

  • Dencausse G, Morrow R, Rogé M, Fleury S (2014) Lateral stirring of large-scale tracer fields by altimetry. Ocean Dyn 64:61–78. doi:10.1007/s10236-013-0671-8

    Article  Google Scholar 

  • Desprès A, Reverdin G, D’ Ovidio F (2011) Mechanisms and spatial variability of meso scale frontogenesis in the northwestern subpolar gyre. Ocean Model 39:97–113. doi:10.1016/j.ocemod.2010.12.005

    Article  Google Scholar 

  • Dibarboure G, Boy F, Desjonqueres JD et al (2014) Investigating short-wavelength correlated errors on low-resolution mode altimetry. J Atmos Ocean Technol 31:1337–1362. doi:10.1175/JTECH-D-13-00081.1

    Article  Google Scholar 

  • Dohan K, Maximenko N (2010) Monitoring ocean currents with satellite sensors. Oceanography 23:94

    Article  Google Scholar 

  • Durack PJ, Wijffels SE (2010) Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23:4342–4362. doi:10.1175/2010JCLI3377.1

    Article  Google Scholar 

  • Fu L-L, Alsdorf D, Rodriguez E, et al. (2009) The SWOT (surface water and ocean topography) mission: spaceborne radar interferometry for oceanographic and hydrological applications. OCEANOBS’09 Conference Proceedings

  • Gaillard F (2012) ISAS-tool version 6 : method and configuration. http://dx.doi.org/10.13155/22583

  • Henocq C, Boutin J, Reverdin G et al (2010) Vertical variability of near-surface salinity in the tropics: consequences for L-band radiometer calibration and validation. J Atmos Ocean Technol 27:192–209. doi:10.1175/2009JTECHO670.1

    Article  Google Scholar 

  • Kessler WS, Cravatte S (2013) Mean circulation of the Coral Sea. J Geophys Res Oceans 118:6385–6410. doi:10.1002/2013JC009117

    Article  Google Scholar 

  • Lapeyre G, Klein P (2006) Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J Phys Oceanogr 36:165–176. doi:10.1175/JPO2840.1

    Article  Google Scholar 

  • Lehahn Y, D’ Ovidio F, Lévy M, Heifetz E (2007) Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J Geophys Res 112, C08005. doi:10.1029/2006JC003927

    Google Scholar 

  • Maes C, Ando K, Delcroix T et al (2006) Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett 33, L06601. doi:10.1029/2005GL024772

    Article  Google Scholar 

  • Maharaj AM, Holbrook NJ, Cipollini P (2009) Multiple westward propagating signals in South Pacific sea level anomalies. J Geophys Res 114, C12016. doi:10.1029/2008JC004799

    Article  Google Scholar 

  • Marshall J, Shuckburgh E, Jones H, Hill C (2006) Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J Phys Oceanogr 36:1806–1821. doi:10.1175/JPO2949.1

    Article  Google Scholar 

  • Morrow R, Le Traon P-Y (2012) Recent advances in observing mesoscale ocean dynamics with satellite altimetry. Adv Space Res 50:1062–1076. doi:10.1016/j.asr.2011.09.033

    Article  Google Scholar 

  • Morrow R, Donguy J-R, Chaigneau A, Rintoul SR (2004) Cold-core anomalies at the subantarctic front, south of Tasmania. Deep-Sea Res I Oceanogr Res Pap 51:1417–1440. doi:10.1016/j.dsr.2004.07.005

    Article  Google Scholar 

  • Picaut J, Hayes SP, McPhaden MJ (1989) Use of the geostrophic approximation to estimate time-varying zonal currents at the equator. J. Geophys Res 94:3228–3236

  • Picaut J, Ioualalen M, Menkes C et al (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274:1486–1489

  • Picaut J, Ioualalen M, Delcroix T et al (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Niño-Southern Oscillation and biogeochemical phenomena. J Geophys Res 106:2363–2386. doi:10.1029/2000JC900141

    Article  Google Scholar 

  • Ponte AL, Klein P, Capet X et al (2013) Diagnosing surface mixed layer dynamics from high-resolution satellite observations: numerical insights. J Phys Oceanogr 43:1345–1355. doi:10.1175/JPO-D-12-0136.1

    Article  Google Scholar 

  • Qiu B, Chen S (2004) Seasonal modulations in the eddy field of the South Pacific Ocean. J Phys Oceanogr 34:1515–1527. doi:10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2

    Article  Google Scholar 

  • Reid JL (1997) On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Prog Oceanogr 39:263–352. doi:10.1016/S0079-6611(97)00012-8

    Article  Google Scholar 

  • Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res Oceans 116, C07018. doi:10.1029/2010JC006505

    Article  Google Scholar 

  • Rogé M, Morrow RA (2014) Using altimetric Lagrangian advection to reconstruct fine scale SSS fields in the tropical and subtropical Pacific. CTOHIntrenal Report, No. 01–2014

  • Roundy PE, Kravitz JR (2009) The Association of the Evolution of Intraseasonal Oscillations to ENSO Phase. J Clim 22:381–395. doi:10.1175/2008JCLI2389.1

    Article  Google Scholar 

  • Sallée JB, Speer K, Morrow R, Lumpkin R (2008) An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J Mar Res 66:441–463. doi:10.1357/002224008787157458

    Article  Google Scholar 

  • Seo H, Jochum M, Murtugudde R et al (2008) Precipitation from African easterly waves in a coupled model of the tropical Atlantic. J Clim 21:1417–1431. doi:10.1175/2007JCLI1906.1

    Article  Google Scholar 

  • Sudre J, Morrow RA (2008) Global surface currents: a high-resolution product for investigating. Ocean Dyn 58:101–118. doi:10.1007/s10236-008-0134-9

    Article  Google Scholar 

  • Sudre J, Maes C, Garçon V (2013) On the global estimates of geostrophic and Ekman surface currents. Limnol Oceanogr 3:1–20. doi:10.1215/21573689-2071927

    Article  Google Scholar 

  • Webb DJ (2000) Evidence for shallow zonal jets in the south equatorial current region of the Southwest Pacific. J Phys Oceanogr 30:706–720. doi:10.1175/1520-0485(2000)030<0706:EFSZJI>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

M. Rogé and this study were financed by the French CNES-TOSCA programme. We gratefully acknowledge the help from Francesco D’Ovidio for the advection code and early assistance with the project. We are also indebted to Fernando Nino of the CTOH/LEGOS for assistance with the altimeter data and code, Thierry Delcroix and Gael Alory of the ORE-SSS at LEGOS for in situ salinity advice and to our anonymous reviewers who provided constructive and pertinent comments to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary A. Morrow.

Additional information

Responsible Editor: Richard John Greatbatch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogé, M., Morrow, R.A. & Dencausse, G. Altimetric Lagrangian advection to reconstruct Pacific Ocean fine-scale surface tracer fields. Ocean Dynamics 65, 1249–1268 (2015). https://doi.org/10.1007/s10236-015-0872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0872-4

Keywords

Navigation