Skip to main content

Advertisement

Log in

High-resolution modeling of the mean flow and meso-scale eddy variability around the Grand Banks of Newfoundland

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The mean flow and meso-scale eddy variability in the region around the Grand Banks of Newfoundland (GBN) are quantified by analyzing surface drifter observations, mean dynamic topography (MDT), along-track satellite altimeter observations, and the solutions of two high-resolution ocean models. By increasing the horizontal resolution from 6.5 km (CREG12) to 2.2 km (GBN36), the modeled mean kinetic energy (MKE) decreases and the eddy kinetic energy (EKE) increases in the study area. GBN36 obtains the MKE of surface geostrophic currents and total currents similar to that derived from MDT and drifter data, whereas CREG12 overestimates these quantities by 40–53 %. CREG12 and GBN36 underestimate the EKE of surface geostrophic currents by 46 and 30 %, respectively, with respect to the EKE derived from along-track altimeter data. The models do not reproduce the strong eddy activity in the Gulf Stream and its downstream region, possibly related to a northward shift of the Gulf Stream position by 0.5° in latitude compared with observations. Both models obtain wavenumber spectra of sea level anomaly in close agreement with the spectrum derived from along-track altimeter data, with a slope of −5 at wavelengths near 100 km on logarithmic spectral density scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Axell LB (2002) Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea. J Geophys Res 107:3204. doi:10.1029/2001JC000922

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. Tech Rep, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA. doi: 10.7289/V5C8276M

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32:355–371

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Böning CW, Budich RG (1992) Eddy dynamics in a primitive equation model: sensitivity to horizontal resolution and friction. J Phys Oceanogr 22:361–381

    Article  Google Scholar 

  • Bryan FO, Hecht MW, Smith RD (2007) Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: the western boundary current system. Ocean Model 16:141–159. doi:10.1016/j.ocemod.2006.08.005

    Article  Google Scholar 

  • Bryan K, Manabe S, Pacanowski RC (1975) A global ocean-atmosphere climate model. Part II. The oceanic circulation. J Phys Oceanogr 5:30–46

    Article  Google Scholar 

  • Clarke RA, Hill HW, Reiniger RF, Warren BA (1980) Current system south and east of the grand banks of Newfoundland. J Phys Oceanogr 10:25–65

    Article  Google Scholar 

  • Cummings JA (2005) Operational multivariate ocean data assimilation. Quart J Royal Met Soc Compt Rendus Geosci 131:3583–3604

    Article  Google Scholar 

  • Delworth TL et al (2012) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Clim 25:2755–2781

    Article  Google Scholar 

  • Drakkar Group (2007) Eddy permitting ocean circulation hindcasts of past decades. Clivar Exch 12:8–10

    Google Scholar 

  • Dupont F, Higginson S, Bourdallé-Badie R, Lu Y, Roy F, Smith GC, Lemieux J-F, Garric G, Davidson F (2015) A high-resolution ocean and sea-ice modelling system for the arctic and North Atlantic Oceans. Geosci Model Dev Discuss 8:1–52. doi:10.5194/gmdd-8-1-2015

    Article  Google Scholar 

  • Elipot S, Frajka-Williams E, Hughes CW, Willis JK (2014) The observed North Atlantic meridional overturning circulation: its meridional coherence and ocean bottom pressure. J Phys Oceanogr 44:517–537

    Article  Google Scholar 

  • Fischer J, Schott FA, Dengler M (2004) Boundary circulation at the exit of the Labrador Sea. J Phys Oceanogr 34:1548–1570

    Article  Google Scholar 

  • Fischer J, Karstensen J, Zantopp R, Visbeck M, Biastoch A, Behrens E, Böning CW, Quadfasel D, Jochumsen K, Valdimarsson H, Jónssong S, Bacon S, Holliday NP, Dye S, Rhein M, Mertens C (2014) Intra-seasonal variability of the DWBC in the western subpolar North Atlantic. Prog Oceanogr. doi:10.1016/j.pocean.2014.04.002

    Google Scholar 

  • Flather RA (1976) A tidal model of the Northeast Pacific. Atmosphere-Ocean 23:22–45

    Google Scholar 

  • Fu L-L (1983) On the wave number spectrum of oceanic mesoscale variability observed by the SEASAT altimeter. J Geophys Res 88:4331–4341. doi:10.1029/JC088iC07p04331

    Article  Google Scholar 

  • Fu L-L, Chelton DB, Le Traon P-Y, Morrow R (2010) Eddy dynamics from satellite altimetry. Oceanography 23:14–25. doi:10.5670/oceanog.2010.02

    Article  Google Scholar 

  • Gaspar P, Grégoris Y, Lefevre J-M (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J Geophys Res 95:16179–16193. doi:10.1029/JC095iC09p16179

    Article  Google Scholar 

  • Greenberg DA, Petrie BD (1988) The mean barotropic circulation on the Newfoundland shelf and slope. J Geophys Res 93:15,541–15,550. doi:10.1029/JC093iC12p15541

    Article  Google Scholar 

  • Griffies SM, Hallberg RW (2000) Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale Eddy-permitting ocean models. Mon Weather Rev 128:2935–2946

    Article  Google Scholar 

  • Griffies SM, Yin J et al (2014) An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model 78:35–89. doi:10.1016/j.ocemod.2014.03.004

    Article  Google Scholar 

  • Han G, Kulka D (2009) Dispersion of eggs, larvae and pelagic juveniles of white hake (Urophycis tenuis) in relation to ocean currents of the grand bank: a modelling approach. J Northwest Atl Fish Sci 41:183–196. doi:10.2960/J.v41.m627

    Article  Google Scholar 

  • Han G, Ma Z, de Young B, Foreman M, Chen N (2011) Simulation of three-dimensional circulation and hydrography over the grand banks of Newfoundland. Ocean Model 40:199–210. doi:10.1016/j.ocemod.2011.08.009

    Article  Google Scholar 

  • Higginson S, Thompson KR, Huang J, Véronneau M, Wright DG (2011) The mean surface circulation of the North Atlantic subpolar gyre: a comparison of estimates derived from new gravity and oceanographic measurements. J Geophys Res 116, C08016. doi:10.1029/2010JC006877

    Google Scholar 

  • Hollingsworth A, Kalbers P, Renner V, Burridge DM (1983) An internal symmetric computational instability. Q J R Meteorol Soc 109:417–428

    Article  Google Scholar 

  • Hunke EC (2001) Viscous-plastic sea ice dynamics with the EVP model: linearization issues. J Comput Phys 170:18–38

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos sea ice model documentation and software user’s manual. Tech Rep, Los Alamos Nat Lab

  • Hughes CW, Elipot S, Maqueda M, Loder JW (2013) Test of a method for monitoring the Geostrophic meridional overturning circulation using only boundary measurements. J Atmos Ocean Technol 30:789–809

    Article  Google Scholar 

  • Hurlburt HE, Hogan PJ (2000) Impact of 1/8° to 1/64° resolution on Gulf Stream model—data comparisons in basin-scale subtropical Atlantic Ocean models. Dyn Atmos Oceans 32:283–329. doi:10.1016/S0377-0265(00)00050-6

    Article  Google Scholar 

  • Kundu PK, Cohen IM (2004) Fluid mechanics, 3nd edition, Academic Press

  • Lipscomb WH, Hunke EC, Maslowski W, Jakacki J (2007) Ridging, strength, and stability in high-resolution sea ice models. J Geophys Res 112:C03S91. doi:10.1029/2005JC003355

    Google Scholar 

  • Lozier MS (2012) Overturning in the North Atlantic. Annu Rev Mar Sci 4:291–315. doi:10.1146/annurev-marine-120710-100740

    Article  Google Scholar 

  • Lumpkin R, Johnson GC (2013) Global ocean surface velocities from drifters: mean, variance, El Nino–Southern oscillation response, and seasonal cycle. J Geophys Res Oceans 118:2992–3006. doi:10.1002/jgrc.20210

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1998) OPA8.1 Ocean general circulation model reference manual. Note du Pole de modelisazion, Institut Pierre-Simon Laplace (IPSL), France, p 11

  • Madec G (2008) Note du Pole de modélisation, No 27 ISSN No 1288–1619. Laplace (IPSL), Institut Pierre–Simon, France, NEMO ocean engine

    Google Scholar 

  • Mann CR (1967) The termination of the gulf Stream and the beginning of the North Atlantic current. Deep-Sea Res 14:337–359

    Google Scholar 

  • Maraldi C, Chanut J, Levier B, Ayoub N, De Mey P, Reffray G, Lyard F, Cailleau S, Drévillon M, Fanjul EA, Sotillo MG, Marsaleix P, Mercator Research and Development Team (2013) NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration. Ocean Sci 9:745–771. doi:10.5194/os-9-745-2013

    Article  Google Scholar 

  • Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3:1–20

    Article  Google Scholar 

  • Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34:693–698. doi:10.1175/2517.1

    Article  Google Scholar 

  • Olbers D, Willebrand J, Eden C (2012) Ocean dynamics. Springer Verlag, Berlin, p 704, ISBN: 978-3-642-23449-1. hdl:10013/epic.39446

    Book  Google Scholar 

  • Petrie B, Anderson C (1983) Circulation on the Newfoundland continental shelf. Atmosphere-Ocean 21:207–226

    Article  Google Scholar 

  • Petrie B, Isenor A (1985) The near-surface circulation and exchange in the Newfoundland grand banks region. Atmosphere-Ocean 23:209–227. doi:10.1080/07055900.1985.9649225

    Article  Google Scholar 

  • Petrie B, Buckley J (1996) Volume and freshwater transport of the Labrador current in Flemish pass. J Geophys Res 101:28335–28342. doi:10.1029/96JC02779

    Article  Google Scholar 

  • Richardson PL (1983) Eddy kinetic energy in the North Atlantic from surface drifters. J Geophys Res 88:4355–4367. doi:10.1029/JC088iC07p04355

    Article  Google Scholar 

  • Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116, C07018. doi:10.1029/2010JC006505

    Google Scholar 

  • Schott F, Zantopp R, Stramma L, Dengler M, Fischer J, Wibaux M (2004) Circulation and deep water export at the western exit of the subpolar North Atlantic. J Phys Oceanogr 34:817–843

    Article  Google Scholar 

  • Schott FA, Fischer J, Dengler M, Zantopp R (2006) Variability of the deep Western Boundary current east of the grand banks. Geophys Res Lett 33:L21S07. doi:10.1029/2006GL026563

    Google Scholar 

  • Smith GC, Roy F, Mann P, Dupont F, Brasnett B, Lemieux J-F, Laroche S, Bélair S (2013) A new atmospheric dataset for forcing ice–ocean models: evaluation of reforecasts using the Canadian global deterministic prediction system. Q J R Meteorol Soc. doi:10.1002/qj.2194

    Google Scholar 

  • Smith RD, Maltrud ME, Bryan FO, Hecht MW (2000) Numerical simulation of the North Atlantic Ocean at 1/10. J Phys Oceanogr 30:1532–1561

    Article  Google Scholar 

  • Smith EH, Soule FM, Mosby O (1937) The Marion and General Greene expeditions to Davis Strait and Labrador Sea. Bull. U.S. Coast Guard, No. 19, 259 pp

  • Stammer D, Böning CW (1992) Mesoscale variability in the Atlantic ocean from Geosat altimetry and WOCE high-resolution numerical modeling. J Phys Oceanogr 22:732–752

    Article  Google Scholar 

  • Stammer D (1997) Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J Phys Oceanogr 27:1743–1769

    Article  Google Scholar 

  • Talandier C, Deshayes J, Treguier A-M, Capet X, Benshila R, Debreu L, Dussin R, Molines J-M, Madec G (2014) Improvements of simulated Western North Atlantic current system and impacts on the AMOC. Ocean Model 76:1–19. doi:10.1016/j.ocemod.2013.12.007

    Article  Google Scholar 

  • Thoppil PG, Richman JG, Hogan PJ (2011) Energetics of a global ocean circulation model compared to observations. Geophys Res Lett 38, L15607. doi:10.1029/2011GL048347

    Google Scholar 

  • Turner M, Skinner J, Roberts J, Harvey R, Ross SL, Environmental Research Ltd. (2010) Review of offshore oil-spill prevention and remediation requirements and practices in Newfoundland and Labrador. St. John’s: Government of Newfoundland and Labrador

  • Urrego-Blanco J, Sheng J (2012) Interannual variability of the circulation over the Eastern Canadian shelf. Atmosphere-Ocean 50:277–300

    Article  Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61:235–265

    Article  Google Scholar 

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust AU-15:70–73

    Article  Google Scholar 

  • Xu Y, Fu L (2011) Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. J Phys Oceanogr 41:802–809

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the Environmental Studies Research Fund (ESRF). We acknowledge the Canadian government CONCEPTS program in facilitating the collaborations among government departments and with Mercator-Ocean of France, and the MEOPAR network for supporting the development of high-resolution ocean models based on NEMO. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/duacs/). MDT_CNES-CLS09 was produced by CLS Space Oceanography Division and distributed by Aviso, with support from Cnes (http://www.aviso.altimetry.fr/). We thank Ji Lei for help with setting up the GBN36 model, Augustine van der Baaren for constructive discussions on spectral analysis, and Zeliang Wang and Jean-Philippe Paquin for their helpful reviews of the manuscript. Two anonymous reviewers provided insightful and constructive reviews that help to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhai.

Additional information

Responsible Editor: Jinyu Sheng

This article is part of the Topical Collection on Atmosphere and Ocean Dynamics: A Scientific Workshop to Celebrate Professor Dr. Richard Greatbatchs 60th Birthday, Liverpool, UK, 1011 April 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, L., Lu, Y., Higginson, S. et al. High-resolution modeling of the mean flow and meso-scale eddy variability around the Grand Banks of Newfoundland. Ocean Dynamics 65, 877–887 (2015). https://doi.org/10.1007/s10236-015-0839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0839-5

Keywords

Navigation