Skip to main content
Log in

A discontinuous finite element baroclinic marine model on unstructured prismatic meshes

Part II: implicit/explicit time discretization

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

We describe the time discretization of a three-dimensional baroclinic finite element model for the hydrostatic Boussinesq equations based upon a discontinuous Galerkin finite element method. On one hand, the time marching algorithm is based on an efficient mode splitting. To ensure compatibility between the barotropic and baroclinic modes in the splitting algorithm, we introduce Lagrange multipliers in the discrete formulation. On the other hand, the use of implicit–explicit Runge–Kutta methods enables us to treat stiff linear operators implicitly, while the rest of the nonlinear dynamics is treated explicitly. By way of illustration, the time evolution of the flow over a tall isolated seamount on the sphere is simulated. The seamount height is 90% of the mean sea depth. Vortex shedding and Taylor caps are observed. The simulation compares well with results published by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.climate.be/slim

References

  • Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 95:2293–2315

    Article  Google Scholar 

  • Ascher UM, Ruuth SJ, Spiteri RJ (1997) Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl Numer Math 25:151–167

    Article  Google Scholar 

  • Ascher UM, Ruuth SJ, Wetton BT (1995) Implicit–explicit methods for time-dependent partial differential equations. SIAM J Numer Anal 32:797–823

    Article  Google Scholar 

  • Blaise S, Comblen R, Legat V, Remacle J-F, Deleersnijder E, Lambrechts J (2010) A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Part I: space discretization. Ocean Dyn (in this issue)

  • Blumberg AF, Mellor GL (1987) A description of three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three dimensional coastal ocean model. American Geophysical Union, Washington, DC, pp 1–16

  • Bryan K (1969) A numerical method for the study of the circulation of the world ocean. J Comput Phys 4:347–376

    Article  Google Scholar 

  • Chapman DC, Haidvogel DB (1992) Formation of Taylor caps over a tall isolated seamount in a stratified ocean. Geophys Astrophys Fluid Dyn 64:31–65

    Article  Google Scholar 

  • Chapman DC, Haidvogel DB (1993) Generation of internal lee waves trapped over a tall isolated seamount. Geophys Astrophys Fluid Dyn 69:33–54

    Article  Google Scholar 

  • Chevaugeon N, Hillewaert K, Gallez X, Ploumhans P, Remacle J-F (2007) Optimal numerical parametrization of discontinuous Galerkin method applied to wave propagation problems. J Comput Phys 223:188–207

    Article  Google Scholar 

  • Cockburn B, Shu C-W (2001) Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16:173–261

    Article  Google Scholar 

  • Cushman-Roisin B (1994) Introduction to geophysical fluid dynamics. Prentice Hall, New York

    Google Scholar 

  • Deleersnijder E (1993) Numerical mass conservation in a free-surface sigma coordinate marine mode with mode splitting. J Mar Syst 4:365–370

    Article  Google Scholar 

  • Dukowicz JK, Smith RD (1994) Implicit free-surface method for the Bryan–Cox–Semtner ocean model. J Geophys Res 99:7991–8014

    Article  Google Scholar 

  • Dukowicz JK, Smith RD, Malone RC (1993) A reformulation and implementation of the Bryan–Cox–Semtner ocean model on the connection machine. J Atmos Ocean Technol 10:195–208

    Article  Google Scholar 

  • Ford R, Pain CC, Piggott M, Goddard A, de Oliveira CR, Umpleby A (2004) A non-hydrostatic finite element model for three-dimensional stratified oceanic flows, part II: model validation. Mon Weather Rev 132:2832–2844

    Article  Google Scholar 

  • Giraldo FX, Perot JB, Fischer PF (2003) A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J Comput Phys 190:623–650

    Article  Google Scholar 

  • Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000) Developments in ocean climate modeling. Ocean Model 2:123–192

    Article  Google Scholar 

  • Hallberg R (1997) Stable split time stepping schemes for large-scale ocean modeling. J Comput Phys 135:54–56

    Article  Google Scholar 

  • Higdon RL, de Szoeke RA (1997) Barotropic–baroclinic time splitting for ocean circulation modeling. J Comput Phys 135:30–53

    Article  Google Scholar 

  • Huppert HE, Bryan K (1976) Topographically generated eddies. Deep-Sea Res 23:655–679

    Google Scholar 

  • Johnson ER (1984) Starting flow for an obstacle moving transversely in a rapidly rotating fluid. J Fluid Mech 149:71–88

    Article  Google Scholar 

  • Killworth PD, Stainforth D, Webb DJ, Paterson SM (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21:1333–1348

    Article  Google Scholar 

  • Kubatko E, Dawson C, Westerink J (2008) Time step restrictions for Runge–Kutta discontinuous Galerkin methods on triangular grids. J Comput Phys 227:9697–9710

    Article  Google Scholar 

  • Marshall JC, Adcroft AJ, Hill CN, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766

    Article  Google Scholar 

  • Verron J, Le Provost C (1985) A numerical study of quasi-geostrophic flow over isolated topography. J Fluid Mech 154:231–252

    Article  Google Scholar 

  • Wang Q (2007) The finite element ocean model and its aspect of vertical discretization. Ph.D. thesis, Bremen University

  • Wang Q, Danilov S, Schröter J (2008) Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation. J Geophys Res 113:C05015

    Article  Google Scholar 

  • White L, Legat V, Deleersnijder E (2008) Tracer conservation for three-dimensional, finite-element, free-surface, ocean modeling on moving prismatic meshes. Mon Weather Rev 136:420–442

    Article  Google Scholar 

  • Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN (1992) A standard test set for numerical approximations to the shallow water equations in spherical geometry. J Comput Phys 102:211–224

    Article  Google Scholar 

Download references

Acknowledgements

Sébastien Blaise and Jonathan Lambrechts are research fellows with the Belgian Fund for Research in Industry and Agriculture (FRIA). Richard Comblen is a research fellow with the Belgian National Fund for Scientific Research (FNRS). Eric Deleersnijder is a research associate with the Belgian National Fund for Scientific Research (FNRS). The research was conducted within the framework of the Interuniversity Attraction Pole TIMOTHY (IAP 6.13), funded by the Belgian Science Policy (BELSPO), and the programme ARC 04/09-316, funded by the Communauté Française de Belgique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Legat.

Additional information

Responsible Editor: Pierre Lermusiaux

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comblen, R., Blaise, S., Legat, V. et al. A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Ocean Dynamics 60, 1395–1414 (2010). https://doi.org/10.1007/s10236-010-0357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0357-4

Keywords

Navigation