Skip to main content
Log in

On vortex loops and filaments: three examples of numerical predictions of flows containing vortices

  • Review Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Vortex motion plays a dominant role in many flow problems. This article aims at demonstrating some of the characteristic features of vortices with the aid of numerical solutions of the governing equations of fluid mechanics, the Navier-Stokes equations. Their discretized forms will first be reviewed briefly. Thereafter three problems of fluid flow involving vortex loops and filaments are discussed. In the first, the time-dependent motion and the mutual interaction of two colliding vortex rings are discussed, predicted in good agreement with experimental observations. The second example shows how vortex rings are generated, move, and interact with each other during the suction stroke in the cylinder of an automotive engine. The numerical results, validated with experimental data, suggest that vortex rings can be used to influence the spreading of the fuel droplets prior to ignition and reduce the fuel consumption. In the third example, it is shown that vortices can also occur in aerodynamic flows over delta wings at angle of attack as well as pipe flows: of particular interest for technical applications of these flows is the situation in which the vortex cores are destroyed, usually referred to as vortex breakdown or bursting. Although reliable breakdown criteria could not be established as yet, the numerical predictions obtained so far are found to agree well with the few experimental data available in the recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig.9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

References

  • Abdelfattah A (1998) Numerische Simulation von Strömungen in 2- und 4-Ventil Motoren. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Aref H, Zawadzki I (1989) Comment on vortex reconnection. In: Moffatt HK, Tsinober A (eds) Topological fluid mechanics: proceedings of the IUTAM symposium, Cambridge, 13–18 August. Cambridge University Press, Cambridge

    Google Scholar 

  • Ashurst WT, Meiron DI (1987) Numerical study of vortex reconnection. Phys Rev Lett 58:1632–1635

    Article  PubMed  Google Scholar 

  • Bernoulli J (1723) Discours sur les loix de la communication du mouvement. In: Opera Omnia 4, III, 81

  • Billant P, Chomaz JM, Delbende I, Huerre P, Loiseleux T, Olendraru C, Rossi M, Selllier A (1998) Instabilities and vortex breakdown in swirling jets and wakes. In: Krause E, Gersten K (eds) Dynamics of slender vortices: proceedings of the IUTAM symposium held in Aachen, Germany 31 August–3 September 1997. Kluwer Academic, Dordrecht, The Netherlands, pp 267–286

    Google Scholar 

  • Binninger, B (1989) Untersuchungen von Modellströmungen in Zylindern von Kolbenmotoren. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Bisset DK, Antonia RA, Browne LWB (1990) Spatial organization of large structures in the turbulent far wake of a cylinder. J Fluid Mech 218

  • Breuer M (1991) Numerische Lösung der Navier-Stokes-Gleichungen zur Simulation des Wirbelaufplatzens. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Breuer M, Hänel D (1993) A dual time-stepping method for 3-D, viscous, incompressible vortex flows. Comput Fluids 22:467–484

    CAS  Google Scholar 

  • Brodetsky MD, Kharitonov AM, Krause E, Pavlov AA, Nikiforov SB, Shevchenko AM (2000) Supersonic leeside flow topology on delta wings revisited. Exp Fluids 29:592–604

    Article  Google Scholar 

  • Brodetsky MD, Krause E, Nikiforov SB, Pavlov AA, Kharitonov AM, Shevchenko AM (2001) Evolution of vortex structures on the leeward side of a delta wing. J Appl Mech Tech Phys 42:243–254

    Google Scholar 

  • Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A2:765–777

    Google Scholar 

  • Chorin A (1967) A numerical method for solving incompressible viscous flow. J Comput Phys 2:12–26

    Google Scholar 

  • Decker F, Neuwerth G, Staufenbiel R (1993) Low-speed aerodynamics of the hypersonic research configuration ELAC 1. Z Flugwiss Weltraumforsch 17: 99–107

    Google Scholar 

  • Didden N (1979) Formation of a vortex ring from a nozzle. Z Angew Math Phys 30:101–116

    Google Scholar 

  • Euler L (1755) Principes généraux du movement des fluides. Mem Acad Sci Berlin 11:274–315

    Google Scholar 

  • Faler JH, Leibovich S (1977) Disrupted states of vortex flow and vortex breakdown. Phys Fluids 20:1385–1400

    CAS  Google Scholar 

  • Faler JH, Leibovich S (1978), An experimental map of the internal structure of a vortex breakdown. J Fluid Mech 86:313–335

    Google Scholar 

  • Fohl T, Turner JS (1975) Colliding vortex rings. Phys Fluids 18:433–436

    Google Scholar 

  • Green SI (ed) (1995) Fluid vortices. Kluwer Academic, Dordrecht, The Netherlands

  • Hagen G (1839) Über die Bewegung des Wassers in engen zylindrischen Röhren. Pogg Ann 46:423

    Google Scholar 

  • Hänel D, Henze A, Krause E (1993) Supersonic and hypersonic flow computations for the research configuration ELAC I and comparison to experimental data. Z Flugwiss Weltraumforsch 17:90–98

    Google Scholar 

  • Hartwich P-M (1983) Berechnung von Vorderkantenwirbeln an Deltaflügeln. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Helming T (1988) Untersuchungen zum Aufpaltzen und zur Instabilität von Randwirbeln. Dissertation, Institut für Luft- und Raumfahrt, RWTH Aachen, Germany

  • Hofhaus J (1996) Numerische Simulation reibungsbehafteter instationärer inkompressibler Strömungen Vergleich zweier Lösungsansätze. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Hussain F, Hayakawa M (1987) Eduction of large-scale organized structures in a turbulent plane wake. J Fluid Mech 180:193–229

    CAS  Google Scholar 

  • Hussain F, Schoppa W (1998) Dynamics of slender vortices near the wall in a turbulent boundary layer. In: Krause E, Gersten K (eds) Dynamics of slender vortices: proceedings of the IUTAM symposium held in Aachen, Germany, 31 August–3 September 1997. Kluwer Academic, Dordrecht, The Netherlands, pp 155–172

    Google Scholar 

  • Inoue O, Hattori Y (1998) Acoustic sound generation by collision of two vortex rings. In: Krause E, Gersten K (eds) Dynamics of slender vortices: proceedings of the IUTAM symposium held in Aachen, Germany, 31 August–3 September 1997. Kluwer Academic, Dordrecht, The Netherlands, pp 361–368

    Google Scholar 

  • Ishii K, Maru H, Adachi S (1998) Sound generation by interactions of two vortex rings. In: Krause E, Gersten K (eds) Dynamics of slender vortices: proceedings of the IUTAM symposium held in Aachen, Germany, 31 August–3 September 1997. Kluwer Academic, Dordrecht, The Netherlands, pp 347–360

    Google Scholar 

  • Jameson A (1983) Solution of the Euler equations for two-dimensional transonic flow by a multigrid method. Appl Math Comput 13:327–355

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Google Scholar 

  • Jeschke M (1991) Zyklusaufgelöste Dichtefelder in einem geschleppten Modellmotor mit quaderförmigem Innennraum. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Kambe T, Minota T, Murakami T, Takaoka M (1989) Oblique collision of two vortex rings and first acoustic emission. In: Moffatt HK, Tsinober A (eds) Topological fluid mechanics: proceedings of the IUTAM symposium, Cambridge, 13–18 August. Cambridge University Press, Cambridge

    Google Scholar 

  • Kármán T von (1911) Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachr Ges Wiss Göttingen Math Phys Kl 1911:509–517

  • Kármán T von (1956) Aerodynamik, Ausgewählte Themen im Lichte der historischen Entwicklung. Interavia

  • Kármán T von (1967) The wind and beyond. Little, Brown, Boston

  • Kida S, Takaoka M, Hussain F (1989) Reconnection of two vortex rings. Phys Fluids A1:630–632

    Google Scholar 

  • Kida S, Takaoka M, Hussain F (1991) Reconnection of two vortex rings. In: Moffatt HK, Tsinober A (eds) Proceedings of the IUTAM symposium. Cambridge University Press, Cambridge, pp 525–534

  • Klöker J (1992) Numerische Simulation einer dreidimensionalen, kompressiblen, reibungsbehafteten Strömung im Zylinder eines Modellmotors. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Knio OM, Ting L (1998) Noise emission due to slender vortex solid body interactions. In: Krause E, Gersten K (eds) Dynamics of slender vortices: proceedings of the IUTAM symposium held in Aachen, Germany, 31 August–3 September 1997. Kluwer Academic, Dordrecht, The Netherlands, pp 369–378

    Google Scholar 

  • Krause E (1999) Slender vortices: the 42nd Ludwig Prandtl lecture, delivered at the GAMM annual meeting, 12 April, 1999, Metz. GAMM-Mitteilungen, vol 2, pp 113–158

    Google Scholar 

  • Krause E (2000a) Navier-Stokes simulations of vortex flows. In: Salvi R (ed) The Navier-Stokes equations: theory and numerical methods, lecture notes in pure and applied mathematics. Dekker, New York, pp 233–246

    Google Scholar 

  • Krause E (2000b) Shock-induced vortex breakdown. In: Tenth international conference on the methods of aerophysical research: proceedings, part II. Novosibirsk Publishing House of Siberian Branch of the Russian Academy of Sciences, Novobirsk, pp 109–114

    Google Scholar 

  • Krause E (2000c) Numerical simulation of supersonic and hypersonic flow around delta wings in comparison to experimental results. In: European congress on computational methods in applied sciences and engineering: ECCOMAS 2000, Barcelona 11–14 September. CIMNE, Barcelona

    Google Scholar 

  • Krause E (2000d) The von Neumann revolution: numerical methods in fluid dynamics. Comput Fluid Dyn J 9(3):147–156

    Google Scholar 

  • Krause E, Gersten K (eds) (1998) Dynamics of slender vortices: proceedings of the IUTAM symposium held in Aachen, Germany, 31 August–3 September 1997. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Krause E, Meinke M (1997) CFD applications on SNI/Fujitsu VPP300. In: Meuer HW (ed) Supercomputer: Awendungen, Architektur, Trends, Fokus, vol 15. KG Saur, München, pp 108–119

    Google Scholar 

  • Krause E, Meinke M, Hofhaus J (1994) Experience with parallel computing in fluid mechanics. In: Wagner S, Périaux J, Hirschel EH (eds) Computational fluid dynamics '94. Wiley, Chichester, pp 87–95

  • Krause E, Limberg W, Kharitonov AM, Brodetsky MD, Henze A (1999) An experimental investigation of the ELA 1 configuration at supersonic speeds. Exp Fluids 26:421–436

    Article  Google Scholar 

  • Krause E, Abstiens R, Fuehling S, Vetlutsky VN (2000) Boundary-layer investigations on a model of the ELAC 1 configuration at high Reynolds numbers in the DNW. Eur J Mech B Fluids 19:745–764

    Article  Google Scholar 

  • Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59

    Google Scholar 

  • Lim TT (1989) An experimental study of a vortex ring interacting with an inclined wall. Exp Fluids 7:453–463

    CAS  Google Scholar 

  • Lim T, Nickels T (1995) Vortex rings. In: Green SI (ed) Fluid vortices. Kluwer Academic, Dordrecht, The Netherlands, pp 94–147

  • Limberg W, Stromberg A (1993) Pressure measurements at supersonic speeds on the research configuration ELAC 1. Z Flugwiss Weltraumforsch 17:82–89

    Google Scholar 

  • Liseikin VD (1999) Grid generation methods. Springer, Berlin Heidelberg New York

  • Lugt HJ (1979) The dilemma of defining a vortex. (Recent developments in theoretical and experimental fluid mechanics) Springer, Berlin Heidelberg New York, pp 309–321

  • Meiburg E (1995) Three-dimensional vortex dynamics simulations. In: Green SI (ed) Fluid vortices. Kluwer Academic, Dordrecht, The Netherlands, pp 651–685

  • Meinke M, Krause E (2000) Application of LES to jets and internal turbulent flows. In: Peyret R, Krause E (eds) Advanced turbulent flow computations. (CISM courses and lectures no. 395) Springer, Berlin Heidelberg New York

  • Meinke M, Krause E, Abdelfattah A (1996) Simulations of piston engine flows in realistic geometries. In: Chattot J-J, Kutler P, Flores J (eds) Proceedings 15th international conference on numerical methods in fluid dynamics. Springer, Berlin Heidelberg New York, pp 195–200

  • Meinke M, Schröder W, Krause E, Rister T (2002) A comparison of second- and sixth-order methods for large-eddy simulations. Comput Fluids 31:695–718

    Article  Google Scholar 

  • Menne S (1986) Rotationssymmetrische Wirbel in achsparalleler Strömung. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Menne S, Liu C (1988) Numerical simulation of a three-dimensional vortex breakdown. Z Flugwiss Weltraumforsch 14:301–308

    Google Scholar 

  • Merkle CL, Athavale M (1987) Time-accurate unsteady incompressible flow algorithms based on artificial compressibility. AIAA-Paper no. 87–1137

  • Metcalfe RW, Hussain F, Menon S, Hayakawa M (1985) Coherent structures in a turbulent mixing layer: a comparison between numerical simulations and experiments. In: Durst F, Launder BE, Lumley JL, Schmidt FW, Whitelaw JH (eds) Turbulent shear flows 5. Springer, Berlin Heidelberg New York

  • Naitoh K (1992) Numerical simulation of the small vortices in the intake and compression processes of an engine. Dissertation, Waseda University, Tokyo

  • Navier M (1823) Mémoire sur les lois du movements des fluides. Mem Acad R Sci VI:389–440

    Google Scholar 

  • Ortmann R (1997) Untersuchung der Strömung in einem 4-Ventil Serienmotor mit der Particle Image Velocimetry. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Oshima Y, Asaka S (1977) Interaction of two vortex rings along parallel axis in air. J Phys Soc Jpn 42:708–713

    CAS  Google Scholar 

  • Oshima Y, Izutsu N (1988) Cross-linking of two vortex rings. Phys Fluids 31:2401–2403

    Article  Google Scholar 

  • Peyret R (2002) Spectral methods for incompressible viscous flow. Springer, Berlin Heidelberg New York

  • Peyret R, Krause E (2000) Advanced turbulent flow computations. (CISM courses and lectures no. 395) Springer, Berlin Heidelberg New York

  • Peyret R, Taylor TD (1983) Computational methods for fluid flow. Springer, Berlin Heidelberg New York

  • Poiseuille JLM (1840) Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres. C R Acad Sci 11:961–967

    Google Scholar 

  • Prandtl L (1904) Über die Flüssigkeitsbewegung bei sehr kleiner Reibung. In: Proceedings of the third international congress of mathematicians, Heidelberg, 1904. Reprinted in: Vier Abhandl zur Hydro- u. Aerodynamik, Göttingen, 1927. NACA Tech Memo 452 (1928)

    Google Scholar 

  • Prandtl L (1918) Der Tragflügel endlicher Spannweite. Nachr Ges Wiss Göttingen Math Phys Kl 24:451–477

  • Prandtl L, Tietjens OG (1934) Fundamentals of hydro and aeromechanics. United Engineering Trustees/Dover Publications, New York

  • Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the laws of resistance in parallel channels. Philos Trans R Soc Lond 174:935–982

    Google Scholar 

  • Rhie C, Chow W (1983) Numerical study of a vortex ring interacting with an inclined wall. Exp Fluids 7:453–463

    Google Scholar 

  • Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes, J Comp Phys 43:357–372

    Google Scholar 

  • Saint-Venant B de (1834) Mémoire sur le la dynamique des fluides. C R Acad Sci 17:1240–1243

    Google Scholar 

  • Schatzle PR (1987) An experimental study of fusion of vortex rings. PhD thesis, California Institute of Technology

  • Shariff K, Leonard A (1992) Vortex rings. Annu Rev Fluid Mech 24:235–279

    Article  Google Scholar 

  • Shi XG (1983) Numerische Simulation des Aufplatzens von Wirbeln. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Stokes GG (1845) On theories of the internal friction of fluids in motion. In: Trans Cambridge Philos Soc 8

  • Stromberg A, Henze A, Limberg W, Krause E (1996) Investigation of vortex structures on delta wings. Z Flugwiss Weltraumforsch 20:71–79

    Google Scholar 

  • Szábo I (1976) Geschichte der mechanischen Prinzipien. Birkhäuser, Basel

  • Thomas PD, Lombard CK (1979) Geometric conservation law and its application to flow computations on moving grids. AIAA J 17:1030–1037

    Google Scholar 

  • Ting L, Klein R, Knio OM (1998) Asymptotic theory of slender vortex filaments old and new. In: Krause E, Gersten K (eds) Dynamics of slender vortices: proceedings of the IUTAM symposium held in Aachen, Germany, 31 August–3 September 1997. Kluwer Academic, Dordrecht, The Netherlands, pp 3–20

    Google Scholar 

  • Van Dyke M (1988) An album of fluid motion. Parabolic Press, Stanford, Calif.

  • Weimer M (1997) Aufplatzen freier Wirbel und drallbehafteter Rohrströmungen. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Weimer M, Meinke M, Krause E (1996) Numerical simulation of incompressible flows with the method of artificial compressibility. In: Hirschel EH (ed) Flow simulation with high-performance computers II. 52. Notes on numerical methods in fluid mechanics. Vieweg, Braunschweig, Germany, pp 355–368

  • Weiss AH (1988) Experimentelle Untersuchung der Verwirbelung von Strömungen im Zylinder von Kolbenmotoren. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany

  • Winckelmans GS, Leonard A (1992) Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J Comp Phys 109:247–273

    Article  Google Scholar 

Download references

Acknowledgement

The Aerodynamisches Institut of the RWTH Aachen was generously supported in most of its scientific activities by the Land Nordrhein-Westfalen and the Deutsche Forschungsgemeinschaft. The author gratefully acknowledges the continuous support, without which many scientific initiatives would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egon Krause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, E. On vortex loops and filaments: three examples of numerical predictions of flows containing vortices. Naturwissenschaften 90, 4–26 (2003). https://doi.org/10.1007/s00114-002-0386-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-002-0386-z

Keywords

Navigation