A Comprehensive Catalog of Galactic Eclipsing Binary Stars with Eccentric Orbits Based on Eclipse Timing Diagrams

, , , , , and

Published 2018 April 19 © 2018. The American Astronomical Society. All rights reserved.
, , Citation C.-H. Kim et al 2018 ApJS 235 41 DOI 10.3847/1538-4365/aab7ef

Download Article PDF
DownloadArticle ePub

You need an eReader or compatible software to experience the benefits of the ePub3 file format.

0067-0049/235/2/41

Abstract

A comprehensive catalog of 623 galactic eclipsing binary (EB) systems with eccentric orbits is presented with more than 2830 times of minima determined from the archived photometric data by various sky-survey projects and new photometric measurements. The systems are divided into two groups according to whether the individual system has a GCVS name or not. All the systems in both groups are further classified into three categories (D, A, and A+III) on the basis of their eclipse timing diagrams: 453 D systems showing just constantly displaced secondary minima, 139 A systems displaying only apsidal motion (AM), and 31 A+III systems exhibiting both AM and light-time effects. AM parameters for 170 systems (A and A+III systems) are consistently calculated and cataloged with basic information for all systems. Some important statistics for the AM parameters are discussed and compared with those derived for the eccentric EB systems in the Large and Small Magellanic Clouds.

Export citation and abstract BibTeX RIS

1. Introduction

Eclipsing binary (EB) stars with an eccentric orbit are very important stellar systems because they provide the physical and orbital parameters and exhibit some observable phenomena that are fundamental to our understanding of stellar structure, evolution, and tidal phenomena. Accurately determined physical parameters of their constituent stars, such as their mass, radius, temperature, and luminosity, have contributed to testing and improving stellar evolution models (Andersen 1991; Torres et al. 2010). The orbital elements of an eccentric orbit such as the orbital period, eccentricity, and argument of periastron, with the physical parameters, have been successfully used to constrain the timescales of synchronization and circularization predicted by some tidal theories (Zahn 2008). Among the tidally and/or rotationally induced observable effects are ellipsoidal variability, periastron brightening, apsidal motion (AM), and so on. In particular, AMs in eccentric EB (EEB) stars have provided important information on the internal structures of stars, as well as tests of general relativity in some binary stars (Giménez 1985; Claret & Giménez 1993). Moreover, some rare systems exhibiting simultaneously AM and a light-time effects (LITE) due to a third body are very valuable in the sense that they make additional contributions to statistics and the formation of multiple stellar systems and celestial mechanics (Bozkurt & Değirmenci 2007; Tokovinin 2008). Excellent reviews of the various strains of research described above are given by Mazeh (2008) and Torres et al. (2010).

AM is the rotational motion of the line of apsides of an eccentric binary orbit. It is caused by the external gravitational forces due to tidal and rotational distortions of the component stars in the binary star. The AM rate is dependent on the strengths of the forces, which strongly depend on the internal density concentrations of stars. Therefore, the observed AM rate is directly related to the stellar interior density profile in an averaged manner for two component stars, known as the weighted mean AM constant k2. The observed k2 constants are compared with the theoretical ones to test and improve the stellar internal structure models. Giménez (2007) gave a detailed review of the AM test, starting from the historical background and including major achievements, present status, and future prospects.

Naturally, many investigators have published catalogs of galactic EEB stars, including AM, which can be used to better understand the stellar internal structure and tidal theories (Sterne 1939; Schwarzschild 1958; Kopal 1959, 1978; Semeniuk 1968; Batten 1973; Petty 1973; Jeffery 1984; Hegedüs 1988, 1989; Claret & Giménez 1993; Giménez 1994; Petrova & Orlov 1999). These catalogs are also very useful for observers who prepare observational programs for chosen targets. The most recent catalog, published by Bulut & Demircan (2007), contains the physical parameters of 124 galactic EEB stars, including AM parameters and 150 candidate systems.

During the last three decades, there have been long-term and large scale photometric surveys with their own missions such as MAssive Compact Halo Objects (MACHO: Faccioli et al. 2007), the Optical Gravitational Lensing Experiment (OGLE: Graczyk et al. 2011; Pawlak et al. 2013, 2016; Soszyński et al. 2016), the All Sky Automated Survey (ASAS: Pojmański 2002), the Super Wide Angle Search for Planets (SWASP: Christian et al. 2006), the Trans-atlantic Exoplanet Survey (TrES: Alonso et al. 2004; Devor et al. 2008), the INTErnational Gamma-Ray Astrophysics Laboratory/Optical Monitoring Camera (INTEGRAL/OMC: Winkler et al. 2003; Sobotka 2007; Alfonso-Garzón et al. 2012), HIgh Precision PARallax COllecting Satellite (HIPPARCOS: Perryman et al. 1997), the Northern Sky Variability Survey (NSVS: Woźniak et al. 2004), the Catalina Sky Survey (CSS: Larson et al. 2003; Drake et al. 2014), the Cluster AgeS Experiment (CASE: Kaluzny et al. 2014, 2015), π of the Sky (PoS: Burd et al. 2004), and the Chandra X-ray Sky Survey (CXSS: Weisskopf et al. 2002; Evans et al. 2010). These surveys, often as a by-product, reported tens of thousands of new EBs not only in our own galaxy but also in other nearby galaxies (e.g., the Large and Small Magellanic Clouds; hereafter LMC, SMC, or MCs), and many of these were EEBs.

In particular, owing to the MACHO and OGLE survey projects, extra-galactic EEB stars showing AM in the SMC and the LMC have been increasingly reported in a series of intensive research efforts (Michalska & Pigulski 2005; Michalska 2007; Zasche & Wolf 2013; Hong et al. 2014; and Zasche et al. 2015 for the LMC, and Graczyk 2003; North et al. 2010; Zasche et al. 2014; and Hong et al. 2015, 2016 for the SMC). It is worth mentioning the very recent work by Hong et al. (2016), presenting the eclipse timing diagrams (hereafter ETDs, commonly referred to as OC diagrams) for 90 EEB systems with clear AM in the SMC, based on the homogeneous OGLE photometric data, as well as their parameters calculated in a consistent way with the Giménez & Bastero (1995) method.

Despite the flood of new data on EEBs from the abovementioned surveys, no new compilation has appeared after that by Bulut & Demircan (2007). The main aim of this paper is to present an updated catalog of EEB systems, making use of the new observations available since the publication of Bulut & Demircan (2007). Therefore, we compiled a comprehensive catalog consisting of 623 galactic EEB systems, among them, 170 AM systems. The catalog represents the basic parameters of EEB systems, and we also give the parameters for the AM systems computed consistently with the Giménez & Bastero (1995) method.

2. Data Collection and Classification of Eclipsing Binaries with Elliptical Orbits

2.1. Data Collection

An EB star is considered to have an eccentric orbit if it meets one or more observational criteria, such as:

  • (i)  
    The ETD of the star shows that the (OC) values of the primary and secondary minima are 180° out of phase with each other.
  • (ii)  
    The photometric light curves have the secondary eclipse displaced from phase 0.5, and/or the durations of primary and secondary eclipses are different from each other.
  • (iii)  
    The light curves display some light-brightening near the periastron.
  • (iv)  
    The radial velocity curves of the components deviate from a simple sinusoidal curve.

In addition, when one or more of the above criteria clearly vary with time, the EB system is safely classified into an EEB system showing AM.

We made four rules that the EEB stars in our catalog should satisfy:

  • (a)  
    They should fulfill observational criteria (i) or (ii). In this sense, our catalog is completely based on ETD.
  • (b)  
    We did not consider contact (W Ursae Majoris-type) and semidetached systems even if they fulfill criterion (i). The times of secondary minima for these stars may be displaced from the phase 0.5 due to asymmetry in the light curve caused by some physical processes.
  • (c)  
    We did take into account the EEB stars only in our galaxy.
  • (d)  
    We excluded new EEB stars discovered by the Kepler mission, which are expected to be more than 200 or 300 in number (see Kirk et al. 2016), but we considered the Kepler stars that have been observed earlier. The Kepler catalog numbers of these stars are presented in the column "remarks" of Tables 1 and 2 (see below). We think the compilation of new EEB stars by the Kepler mission would be another important task.

Under these rules, we compiled the list of EEB stars (Tables 3 and 4) as follows: all OC diagrams (ETDs) of EB stars have been scrutinized in the timing database TIDAK5 managed by the co-authors of this paper (J.M.K., W.O., and B.Z.). If possible, criterion (ii) was checked using the mean light curves taken from the archived data of sky-survey projects such as ASAS, HIPPARCOS, NSVS, SWASP, and others. When there were no consecutive observations near eclipses (most cases) but a mean light curve was well-defined, the eclipse timings were obtained by superposing individual observed points in several consecutive minima onto a mean light curve. Some individual minima for a few stars were determined from the SWASP archived data. The same procedures were applied to the stars reported as new EEB stars from the analysis of the photometric data by some sky-survey projects (e.g., Devor et al. 2008; Shivvers et al. 2014), to the candidate stars in the Bulut & Demircan (2007) catalog and to the stars reported as EEB stars by individual author(s). The work of determining eclipse timings from the abovementioned photometric data archives was mostly carried out by two authors of this paper (B.Z. and C.H.K.).

Table 1.  New Times of Minima of EEB Systems with GCVS Names

Star Name Min. Timea Err. Ty. Rem.b References
OT AND 53969.541 0.010 pri : 5
OT AND 54397.462 0.025 sec   5
V522 AND 51486.9589 0.0031 sec n 15
V522 AND 54221.1262 0.0037 sec n 5
V522 AND 54334.4196 0.0040 sec n 5
V522 AND 54353.4232 0.0010 pri n 5
V522 AND 54383.6353 0.0007 pri   5
V522 AND 54436.5038 0.0005 pri   5
V522 AND 55119.9495 0.0054 sec n 7
BV ANT 52764.7946 0.0013 pri n 12
BV ANT 52766.8295 0.0021 sec n 12
BV ANT 53870.2787 0.0005 sec   5
BV ANT 53888.2487 0.0006 sec   5
BV ANT 53906.2213 0.0007 sec   5
BV ANT 54159.3752 0.0003 pri   5

Notes. This table displays only the first 15 lines.

aHJD2400000+ is suppressed. bn = normal minima; := uncertain; ::= very uncertain.References. (1) This paper; (2) Kreiner et al. (2001, TIDAK), (3) Kafka (2017, AAVSO), (4) Burd et al. (2004, PoS), (5) Christian et al. (2006, SWASP), (6) Devor et al. (2008, TrES), (7) Drake et al. (2014, CSS), (8) Evans et al. (2010, CXSS), (9) Høg et al. (2000, TYCHO-2), (10) Perryman et al. (1997, HIPPARCOS), (11) Pojmański (1997, ASAS-2), (12) Pojmański (2002, ASAS-3), (13) Prša et al. (2001, KEPLER), (14) Winkler et al. (2003, INTEGRAL/OMC), (15) Woźniak et al. (2004, NSVS).

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

Table 2.  New Times of Minima of EEB Systems without GCVS Names

Star Name Min. Timea Err. Ty. Rem.b References
2MASS J00372334+4719206 53271.9587 0.0008 pri 2
2MASS J00372334+4719206 53274.9945 0.0016 sec 2
2MASS J00372334+4719206 53277.8186 0.0021 pri 2
2MASS J00372334+4719206 53280.8770 0.0015 sec 2
2MASS J00372334+4719206 53283.6864 0.0016 pri 2
2MASS J00372334+4719206 53286.7316 0.0034 sec 2
2MASS J00435925+5114000 53250.9123 0.0006 sec 2
2MASS J00435925+5114000 53256.7689 0.0039 pri 2
2MASS J00435925+5114000 53262.6987 0.0010 sec 2
2MASS J00435925+5114000 53263.8253 0.0011 pri 2
2MASS J00435925+5114000 53270.9079 0.0019 pri 2
2MASS J00435925+5114000 53276.8600 0.0030 sec 2
2MASS J00435925+5114000 53282.6968 0.0029 pri 2
2MASS J00435925+5114000 53283.9434 0.0015 sec 2
2MASS J00435925+5114000 53303.9250 0.0015 pri 2

Notes. This table displays only the first 15 lines.

aHJD2400000+ is suppressed. bn = normal minima; := uncertain; ::= very uncertain.References. (1) Christian et al. (2006, SWASP), (2) Devor et al. (2008, TrES), (3) Drake et al. (2014, CSS), (4) Evans et al. (2010, CXSS), (5) Kaluzny et al. (2015, CASE), (6) Perryman et al. (1997, HIPPARCOS), (7) Pojmański (2002, ASAS-3), (8) Woźniak (2004, NSVS), (9) Popov et al. (2015); (10) Davies (2015).

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

Table 3.  GCVS Eclipsing Binaries with Elliptical Orbits Confirmed by the Eclipsing Timing Diagram

Name Max. Mag.(V) T0 Period Type Number Phase Remark References
  (GCVS) (HJD2400000+) (day)   Pri Sec      
OT And 7.32 45711.945 20.852942 D 7 4 0.521   2; 3
V522 And 13.3 53598.068 7.552946 D 4 4 0.484   4
BV Ant 11.5 53447.830 3.594296 D 7 9 0.567   5
PP Aps 9.70 48503.268 4.279837 A 5 3 var   1
PV Aps 7.80 53763.283 28.875231 D 2 2 0.253   6
BW Aqr 10.3 39680.453 6.7196938 A 43 42 var   8
LL Aqr 9.23 48760.602 20.17844 A: 13 6 var   9
V871 Aql 12.5 38637.144 2.9526725 A 14 13 var   10
V889 Aql 8.52 38241.554 11.120756 A+III 39 36 var   11
V1646 Aql 11.9 52137.573 9.278382 D 2 5 0.567   12
V1665 Aql 8.09 52810.680 3.8817673 A 7 5 var   13
CY Ara 12.3 51931.896 3.0148878 D 2 2 0.626:   1
V539 Ara 5.71 45056.742 3.1690852 A+III 26 19 var   14
V883 Ara 8.55 52190.835 61.873150 D 3 2 0.443   5
AF Ari 6.71 48402.090 153.043 D 2 2 0.714:   15
AG Ari 8.14 54033.319 1.9631291 A: 6 14 var   13
AL Ari 9.23 51112.830 3.747455 A+III: 16 7 var   16
CG Aur 11.7 52501.717 1.8048592 A+III 56 35 var   17; 18
V437 Aur 8.42 55984.966 11.793792 D 3 6 0.397 (a) 1
V645 Aur 9.72 52848.592 10.892495 D 5 6 0.788   19
BW Boo 7.13 40362.754 3.3328202 A+III 36 7 var   7; 20
EQ Boo 8.80 47931.524 5.4353569 D 15 11 0.399   21
WW Cam 10.1 39403.554 2.2743627 A 60 41 var (b) 186
AN Cam 10.4 26006.350 20.99851 D 11 8 0.779   23
AS Cam 8.57 40204.406 3.4309691 A+III: 86 65 var (a) 24
DT Cam 8.13 48501.635 7.0662668 D 8 2 0.578   1
OO Cam 10.9 56742.289 8.1190451 D 5 5 0.489   19
V347 Cam 11.4 51533.510 9.45932 D 2 2 0.695   19
V361 Cam 11.3 52505.499 8.6386107 D 8 3 0.488:   19
V399 Cam 10.0 51508.615 2.597577 D 3 2 0.430   191
V409 Cam 11.0 51524.67 6.6764669 D 4 2 0.522   19
V422 Cam 11.3 51548.517 17.871 D 2 2 0.490:   19
V469 Cam 12.6 51531.660 11.872601 D 4 3 0.468   25
V498 Cam 11.8 51456.045 12.103206 D 3 3 0.436   19
V534 Cam 13.0 51497.173 3.0142365 A: 6 4 var   26
KX Cnc 7.25 54165.010 31.22009 D 4 8 0.643   27
EN CVn 10.9 51341.868 6.334600 D 7 12 0.513   6
SW CMa 9.12 26705.228 10.091980 A 18 22 var   28
TZ CMa 10.0 55140.754 3.8228660 A: 19 18 var   1
AR CMa 10.9 51869.910 2.332225 A 12 9 var   29
CE CMa 12.8 28098.210 27.072865 D 6 5 0.662   1
CV CMa 13.0 28044.560 3.6282891 A 9 6 var   1
KL CMa 6.73 48170.311 1.7622058 A 16 25 var   30
KV CMa 7.16 48348.430 68.100355 D 3 1 0.338:   31
LT CMa 7.43 48388.536 1.7595257 A: 17 10 var   32
V388 CMa 8.25 53067.815 2.9827176 A: 4 3 var   33
V432 CMa 12.4 54842.771 1.8238629 D 4 4 0.533   34
RW CMi 13.2 25347.152 6.083853 D 14 4 0.796   1
AV CMi 11.4 52500.622 2.277751 A 17 17 var   35
DR CMi 11.1 53841.746 23.76957 D 4 3 0.667   19
EM Car 8.37 46038.813 3.4142750 A 10 12 var (c) 36
GL Car 9.53 24264.449 2.4222326 A+III 107 92 var (d) 37
GR Car 13.7 23905.040 17.139505 D 6 4 0.313   38
QX Car 6.62 40701.193 4.477972 A 11 15 var   37
V466 Car 7.27 48036.750 3.455845 A 10 7 var   39
V467 Car 8.02 48692.580 7.0461414 D 4 3 0.639   31
V493 Car 8.84 47945.914 3.2294245 A+III: 14 15 var   7; 39
V529 Car 8.10 48175.415 4.744547 A 11 10 var   39
V606 Car 8.31 53043.210 12.319288 D 4 3 0.588   33
V610 Car 10.2 53383.410 4.844955 D 4 2 0.316   5
V655 Car 6.19 48174.320 16.932884 D 3 2 0.393   6
V661 Car 8.05 53133.420 23.943421 D 2 2 0.652 (e) 40
V674 Car 9.94 52971.790 19.81316 D 2 2 0.307   5
V725 Car 9.96 52978.220 9.410789 D 2 2 0.158 (e) 40
V733 Car 10.8 51920.875 2.956947 D 3 1 0.521:   40
V734 Car 11.2 52662.700 3.107451 D 3 3 0.439 (e) 40
V736 Car 7.91 52702.033 17.799162 D 3 3 0.658   19
AR Cas 4.89 40063.954 6.0663181 A 15 6 var   41
AZ Cas 9.20 32701.0 3372.3 D 5 1 0.559:   42; 43
IT Cas 11.0 28762.522 3.8966495 A: 63 47 var   22
MU Cas 11.2 51877.158 9.652957 A: 26 24 var   44
OX Cas 9.92 46733.770 2.4893461 A+III: 115 95 var (f) 45
PV Cas 9.73 40227.388 1.7504698 A 190 144 var   45; 46
QX Cas 10.2 36048.858 6.004699 D 38 31 0.370 (g); (h) 47; 48
V381 Cas 10.2 44546.284 1.7459442 A 113 112 var   49
V459 Cas 10.3 25321.581 8.4582605 A: 58 35 var   22; 50
V518 Cas 11.0 51364.712 6.311981 D 4 4 0.504: (i) 1
V744 Cas 8.44 48277.141 4.7816931 D 8 6 0.540   51
V775 Cas 9.73 48766.437 5.3901648 A 9 7 var (a) 31
V785 Cas 9.33 48502.375 2.702517 A 23 28 var   52
V799 Cas 8.80 48500.601 7.7029264 A 7 9 var   53
V821 Cas 8.22 51767.352 1.7697435 A 36 34 var   39; 52
V1018 Cas 10.3 51601.455 4.127756 A: 10 3 var   54
V1066 Cas 10.8 51548.918 8.4649094 D 4 4 0.560   19
V1103 Cas 11.4 51556.705 6.1776282 D 4 3 0.531   19
V1110 Cas 10.6 51481.260 24.850 D 2 2 0.711:   19
V1137 Cas 11.8 51473.588 4.1589911 A: 8 9 var   64
V1141 Cas 12.3 51542.502 6.9092343 A 5 4 var   19
V1162 Cas 11.1 51423.730 29.067 D 2 2 0.230:   19
V1176 Cas 11.2 55192.862 6.334432 D 2 3 0.506   56
EL Cen 12.3 54420.142 21.86765 D 3 3 0.317   189
KT Cen 12.1 41696.044 4.130435 A 23 18 var   57
V346 Cen 8.50 21966.827 6.322007 A+III 41 39 var (j) 58; 179
V383 Cen 13.1 25352.670 6.784384 D 3 3 0.606   59
V384 Cen 11.7 25051.151 12.635271 D 6 4 0.340   60
V636 Cen 8.68 52502.944 4.2839457 A 19 11 var   28
V963 Cen 8.61 51216.195 15.269389 D 5 3 0.290   16
V1000 Cen 8.40 52103.174 16.63481 D 3 2 0.585:   33
V1051 Cen 7.13 47964.540 9.646334 D 3 2 0.413   61; 62
V1071 Cen 9.68 52373.738 2.6953465 D 8 7 0.525   1
V1087 Cen 9.34 50563.588 5.04953 A 14 9 var   63
V1089 Cen 7.88 48503.054 5.48793 D 3 1 0.571:   31
V1118 Cen 9.55 47945.591 11.30489 D 6 4 0.524   54
V1142 Cen 11.7 51257.055 2.5247751 D 2 3 0.552   1
V1166 Cen 8.77 51955.340 13.419817 D 3 3 0.422   31
V1204 Cen 10.9 52652.804 2.3271067 D 3 1 0.479:   5
ψ Cen 4.03 54741.670 38.811612 D 7 4 0.821 (k) 65
CO Cep 12.0 29043.546 4.1375624 D 27 28 0.551   53
CW Cep 7.60 21670.438 2.7291395 A 64 51 var   66; 67
EK Cep 7.99 39002.825 4.4277926 A 136 17 var   68; 177
EY Cep 10.1 52339.190 7.971465 A: 13 21 var (a) 69
NY Cep 7.40 41902.118 15.27565 D 15 2 0.276   70
V397 Cep 7.39 48501.270 2.086826 A 23 23 var   7
V698 Cep 12.7 50421.200 6.618538 A: 4 4 var   71
V731 Cep 10.5 52591.309 6.0684407 D 13 19 0.509   72
V734 Cep 11.0 51482.697 3.7659743 A: 8 7 var   5
V743 Cep 10.5 51542.754 4.6722928 D 7 4 0.541:   54
V750 Cep 11.4 51465.100 18.8805 D 2 2 0.438:   40
V798 Cep 11.9 51605.485 16.080145 D 7 7 0.232   192
V839 Cep 9.93 51448.701 9.963374 D 5 5 0.510   19
V850 Cep 9.98 51476.360 12.92262 D 2 2 0.601:   19
V880 Cep 10.6 51468.130 27.31397 D 2 2 0.540:   19
V881 Cep 11.6 51466.722 2.3337094 D 6 2 0.234   19
V897 Cep 11.4 51474.615 4.487162 D 3 4 0.516   19
V898 Cep 12.2 51366.390 2.8747772 A: 10 9 var   73; 74
V919 Cep 10.6 51295.784 1.8519818 A 8 8 var   64
V921 Cep 11.6 51311.370 13.70883 D 2 3 0.426:   19
V922 Cep 11.5 51606.755 3.5749710 D 4 5 0.508   19
V944 Cep 10.9 51478.670 6.5600625 D 6 2 0.526   75
V957 Cep 11.5 51504.730 1.988735 A 10 13 var   76
V961 Cep 10.4 51442.653 7.0384546 A: 6 6 var   182
TV Cet 8.60 41275.932 9.1032914 A: 28 21 var   24
DP Cet 6.85 48686.724 2.3681676 D 7 1 0.458:   31
BN Cir 9.20 52644.450 4.4097610 D 7 5 0.774 (a) 77
CL Cir 8.57 48501.960 5.2537967 D 5 6 0.565   78
DK Cir 7.68 52779.150 18.56965 D 3 2 0.758   79
RR Col 10.2 51863.460 12.625105 D 4 4 0.537 (a) 80
AW Col 8.00 52941.185 10.32171 D 3 2 0.780    
V454 CrA 10.1 31264.460 2.396844 D 22 5 0.120   1
α CrB 2.21 23165.160 17.359907 A: 10 7 var   81; 82
VV Crv 5.19 56045.713 3.1445102 A: 16 10 var   83
UW Cru 12.3 25362.280 6.354522 D 9 11 0.527:   84
UX Cru 11.7 26044.210 12.29693 D 11 4 0.679   85
DN Cru 8.73 52655.660 9.881198 D 5 5 0.666   86
EP Cru 8.66 52551.881 11.077432 D 6 4 0.615   87
EQ Cru 10.1 52135.205 15.491216 D 2 1 0.460:   33
Y Cyg 7.30 09453.419 2.9963328 A 230 135 var   88
MY Cyg 8.30 41559.599 4.0051877 A 22 30 var   89
V380 Cyg 5.61 41255.983 12.425612 A 13 15 var   90; 178
V453 Cyg 8.29 39340.112 3.8898145 A 46 28 var (l) 91
V477 Cyg 8.50 19468.300 2.346981 A+III 122 49 var   24
V478 Cyg 8.63 44777486 2.880903 A 35 25 var   66
V490 Cyg 13.1 52841.635 1.1402358 A 22 19 var   92
V541 Cyg 10.2 44881.882 15.337891 A 36 29 var   22; 181
V796 Cyg 10.9 55391.397 1.4808692 A 43 43 var   52
V959 Cyg 11.3 33922.283 1.8398158 D 39 0 (m) 93
V974 Cyg 11.9 35019.365 3.2044108 A+III 46 47 var   94; 193
V1136 Cyg 12.5 35453.527 3.4627562 A 44 39 var   53; 95
V1143 Cyg 5.85 48410.333 7.6407536 A 53 15 var   22
V1147 Cyg 11.9 50759.573 15.251329 A 33 24 var (a) 22; 96
V1326 Cyg 11.3 48376.027 16.68178 A 13 16 var   97
V1765 Cyg 6.44 44139.402 13.37370 D 3 2 0.620   98
V2094 Cyg 7.70 48210.561 8.480329 A 37 31 var   99
V2391 Cyg 16.6 51388.271 9.848854 D 11 10 0.634 (a); (n) 1
V2544 Cyg 12.6 55004.489 2.0937745 A 20 13 var   73
V2618 Cyg 10.6 51340.650 47.614432 D 5 1 0.580:   64
V2647 Cyg 11.0 53670.769 5.8553490 A 6 6 var   19
BY Del 11.4 25830.346 10.034213 A: 17 9 var (a) 1
MP Del 7.62 48246.861 21.338522 D 6 3 0.553   100; 101
NN Del 8.49 20212.002 99.26938 D 2 3 0.188   102
AL Dor 7.80 48665.095 14.905314 D 3 2 0.462   6
BF Dra 10.1 47276.316 11.210998 A: 51 34 var   22; 103
CM Dra 12.9 42893.932 1.2683900 D 107 101 0.499   104
GV Dra 8.59 51741.259 23.854330 D 9 3 0.736   105
HP Dra 8.06 51041.581 10.761534 D 4 2 0.518   106
NS Dra 11.3 51515.750 50.3624 D 7 4 0.630   19
V425 Dra 10.7 51397.888 9.3354096 D 7 5 0.547   107
V432 Dra 12.2 53279.518 11.628189 D 14 10 0.697   108
KY Gem 12.7 27098.309 12.33149 D 18 2 0.510:   1
OW Gem 9.0 48332.580 1258.66 D 37 7 0.233   109
V410 Gem 10.8 51548.811 3.4703382 A 8 7 var   64
DI Her 8.39 42234.767 10.550168 A 73 54 var   110
HS Her 8.50 47382.420 1.6374344 A 89 64 var   24; 111
LV Her 10.9 52070.027 18.435935 D 42 31 0.862 (a) 112
V501 Her 10.5 53550.671 8.5976873 D 23 13 0.479   113
V990 Her 7.72 48048.535 8.193298 D 3 2 0.445   19
V994A Her 6.93 53869.726 2.083265 A+III 43 31 var (o) 114
V994B Her 6.93 53870.209 1.4200365 A+III 41 29 var (o) 114
V1146 Her 11.1 51277.788 7.654087 D 2 2 0.485:   64
V1344 Her 11.5 51442.859 7.1461266 D 6 5 0.543   64
AI Hya 9.35 41726.143 8.2896735 A 25 18 var   115
KW Hya 6.11 45021.526 7.750477 D 5 3 0.459 (p) 116
OZ Hya 9.50 51983.944 2.0487656 A: 10 8 var   29
PX Hya 8.47 48457.090 36.15535 D 4 3 0.210   19
V340 Hya 8.24 47948.552 3.647410 D 6 5 0.549 (a) 54
V426 Hya 11.5 51578.820 7.3088523 D 3 3 0.484   5
V434 Hya 12.6 53404.915 5.9198757 D 5 6 0.537   19
RV Hyi 11.8 25477.810 7.1950385 D 5 4 0.617   77
CH Ind 7.50 52854.930 5.952579 A: 9 3 var   1
RW Lac 10.4 52502.488 10.369203 A+III 28 24 var   117
SS Lac 10.1 15908.493 14.41616 D 8 11 0.587 (q); (r) 118; 180
CO Lac 10.3 27534.075 1.5422072 A 99 105 var   45
CY Lac 11.5 54099.083 8.3605554 A: 10 7 var (a) 119
ES Lac 11.0 34240.529 4.459409 A 31 20 var   95; 120
GX Lac 10.1 46009.306 6.3552425 A: 10 8 var   1
IL Lac 12.5 53226.390 7.395661 D 16 20 0.436   121
MZ Lac 11.2 38264.587 3.1587862 A 78 77 var   95; 122
OT Lac 11.2 56927.832 5.149865 A: 8 4 var   123
V339 Lac 12.9 34006.058 3.4085217 A: 17 10 var   1
V340 Lac 11.8 32806.044 19.943209 D 8 5 0.762   124
V345 Lac 11.1 31343.768 7.491888 A+III: 43 42 var   53
V364 Lac 8.51 44257.385 7.351529 A 56 47 var   53
V398 Lac 8.73 48468.760 5.4060442 A 13 7 var   39; 52
V401 Lac 7.93 48501.882 1.9500920 A 20 19 var   10; 125
V402 Lac 6.70 48501.330 3.782029 A+III 25 15 var   194
AT Lep 11.4 52634.523 10.649468 D 6 3 0.448   5
BC Lep 10.6 53619.883 3.9894146 D 2 2 0.510:   19
GG Lup 5.49 46136.732 1.8496037 A 25 19 var (a) 14
OR Lup 9.28 48681.678 7.555967 D 3 2 0.505:   5
OU Lup 9.92 52414.109 4.610488 D 8 7 0.290   33
PP Lup 8.67 53167.600 29.69258 D 2 1 0.277:   31
RR Lyn 5.52 33153.613 9.945078 D 27 9 0.450   126
V370 Lyr 14.0 55011.021 7.0028651 D 23 20 0.497 (s) 1
TZ Men 6.19 42403.748 8.568988 A 6 5 var   55
RU Mon 10.3 38409.594 3.5846336 A+III 98 82 var   193
AO Mon 9.6 40588.327 1.8847631 A+III 53 41 var   128
CF Mon 13.6 30049.203 2.6104748 D 45 3 0.522:   185
V498 Mon 10.3 33221.750 2.4727703 A 26 28 var   29
V501 Mon 12.7 34444.200 7.0212085 D 19 20 0.444   129
V521 Mon 10.0 33008.440 2.970671 A+III 21 18 var   29
V536 Mon 9.1 52739.268 6.133969 D 19 15 0.409 (a) 130
V578 Mon 8.54 54469.078 2.4084871 A 26 11 var (t) 131; 132
V680 Mon 9.6 52992.320 8.537964 D 4 3 0.864 (u) 19
V684 Mon 8.44 54153.537 1.8514195 A 29 31 var (v) 29
V730 Mon 8.85 48502.744 1.5723188 A 12 12 var   29
V883 Mon 8.71 52529.420 50.36184 D 2 2 0.514:   33
V925 Mon 8.30 52625.888 5.9556834 D 8 3 0.532   64
V935 Mon 9.7 53664.383 5.993953 D 2 2 0.777:   1
AY Mus 10.5 41683.788 3.205549 D 10 6 0.484: (r) 57; 187
LX Mus 8.85 48770.045 11.75056 D 3 1 0.393:   54
GM Nor 10.6 41696.918 1.884577 A 17 13 var   57
GN Nor 12.6 25720.294 5.703466 A 13 19 var   133
GV Nor 10.9 25560.129 2.971865 A+III: 20 10 var   29
KO Nor 12.0 53486.062 33.56204 D 3 4 0.471   134
NS Nor 10.1 52258.490 3.223601 D 10 8 0.674   29; 86
V373 Nor 8.47 48998.090 4.947891 D 4 2 0.670   61
V396 Nor 8.33 52104.376 5.535534 D 4 3 0.438   31
V405 Nor 8.81 53176.290 15.06126 D 3 2 0.566   135
V451 Nor 9.38 53063.890 3.459123 D 3 2 0.540   135
U Oph 5.84 45892.449 1.6773461 A+III 79 43 var   24
CY Oph 10.8 51930.304 16.35549 D 3 3 0.297 (a) 80
V451 Oph 7.94 44834.361 2.1965971 A 35 28 var   136
V456 Oph 10.2 41897.530 1.0160012 A+III: 65 41 var   193
V577 Oph 11.4 47406.435 6.079082 A+III: 17 13 var   137
V983 Oph 10.5 53851.944 23.01662 D 4 5 0.207 (a) 1; 80
V2368 Oph 6.22 54300.650 38.328573 D 4 3 0.813   138
V2626 Oph 8.26 52787.532 10.874299 A: 5 4 var   100
CW Ori 13.1 56713.242 1.709929 D 14 3 0.489: (a) 123
EW Ori 9.90 27543.467 6.9368422 A: 45 26 var   22
FT Ori 9.1 41349.057 3.150395 A 102 33 var   139
GG Ori 10.7 35373.482 6.6314930 A 47 44 var   22
V530 Ori 10.6 25558.343 6.1107753 D 35 7 0.466   77; 140
V642 Ori 8.75 27125.980 9.185490 A: 5 11 var (a) 1
V1027 Ori 10.5 52626.560 10.393775 D 18 20 0.556   80
V2592 Ori 7.80 52912.303 13.54996 D 2 2 0.410   135
V2778 Ori 10.2 53830.516 14.387465 D 4 5 0.435   19
V2783 Ori 10.1 54523.748 4.2161557 A+III 12 9 var   33
V2815 Ori 11.8 53059.622 2.1310132 D 8 5 0.481   1
δ Ori 2.14 43872.581 5.732441 A 10 6 var   141; 142
BO Pav 9.3 51873.391 19.23261 D 10 2 0.533   80
EY Pav 12.5 51871.174 15.32095 D 2 3 0.689   80
QU Pav 12.0 51868.524 9.182556 D 2 2 0.390   80
VW Peg 9.9 50706.165 21.071748 D 16 19 0.271 (a) 143
BK Peg 9.97 41587.726 5.4899085 A: 24 28 var   144
AG Per 6.69 24946.515 2.0287296 A 54 52 var   66
CR Per 12.4 56305.373 8.809700 D 9 8 0.644 (a); (w) 123
IM Per 12.0 33541.370 2.2542275 A 61 41 var   145
IQ Per 7.72 44290.364 1.7435633 A 79 30 var   66
NO Per 11.5 51515.750 5.692295 D 8 6 0.356   146
V436 Per 5.49 43561.733 25.93596 D 12 3 0.413   147
V751 Per 11.5 51508.460 5.961338 D 4 4 0.451   19
V754 Per 12.0 53391.851 5.336624 D 5 4 0.410   4
V871 Per 10.9 51421.540 3.0239166 A 16 16 var   52
V884 Per 10.7 51466.910 12.80698 D 4 2 0.539   64
V966 Per 13.0 54157.901 4.309062 D 3 3 0.325:   148
V982 Per 12.8 54277.205 4.606663 D 4 4 0.365   149
SY Phe 9.75 54163.265 5.2708856 A: 14 12 var (x) 150
AI Phe 8.58 43410.190 24.59232 D 10 3 0.462   151
ζ Phe 3.91 41643.699 1.6697695 A+III 30 20 var   152
VZ PsA 5.68 48810.941 5.76333 D 1 1 0.573: (y) 19
KX Pup 12.8 41686.820 2.146795 A: 14 5 var   57
LN Pup 12.5 51873.586 3.951123 A: 12 8 var   86
NO Pup 6.53 41361.815 1.256879 A 20 10 var   37
PV Pup 6.88 43119.710 1.6607283 A+III: 7 9 var   188
V358 Pup 9.30 50818.713 6.7939111 A 14 12 var   153
V365 Pup 7.82 48201.637 30.0338 D 3 1 0.434:   31
V366 Pup 8.07 47860.510 2.483968 A 10 7 var   37
V397 Pup 5.91 48799.940 3.004373 D 5 5 0.680   167
V399 Pup 9.27 47889.838 3.910095 A 15 13 var   154
V438 Pup 5.90 47975.900 4.934993 D 4 3 0.324   61
V596 Pup 6.57 44620.614 4.596174 A: 9 7 var (z) 155
V611 Pup 8.11 52540.600 6.317750 D 3 3 0.418   31
V642 Pup 10.2 51924.896 5.414142 D 2 1 0.424:   79
TZ Pyx 10.7 52500.360 2.318556 A 38 43 var (a) 29
AC Pyx 7.80 48502.796 7.667980 D 3 2 0.384   31
DK Pyx 7.85 48112.305 6.178477 D 2 2 0.291   19
VY Ret 7.89 52900.394 14.21605 D 4 2 0.727   79
V370 Sge 11.7 52734.448 8.326220 D 4 3 0.380   19
YY Sgr 10.0 19467.028 2.628475 A+III 52 42 var   156; 157
V523 Sgr 9.57 15971.568 2.3238134 A 29 31 var   156
V526 Sgr 9.78 47739.658 1.9194119 A 56 60 var   14
V1108 Sgr 11.6 26568.560 46.5832 D 2 2 0.518:   158
V1647 Sgr 6.94 41829.304 3.282805 A 13 15 var   156
V2184 Sgr 12.5 53212.280 16.49541 D 4 4 0.234   190
V2283 Sgr 10.2 38948504 3.4714362 A 44 31 var   156
V3895 Sgr 9.0 53578.090 27.11104 D 6 3 0.408   19
V5565 Sgr 10.4 52819.606 4.302860 D 4 3 0.393   79; 86
V5570 Sgr 8.60 52474.238 11.78983 D 3 2 0.432   31
V5643 Sgr 9.53 52562.152 1.9185860 D 4 3 0.452   1
V5695 Sgr 12.8 54350.910 8.31936 D 2 1 0.574:   159
V5697 Sgr 11.9 54652.801 3.682577 D 3 2 0.587   159
V385 Sco 10.9 53268.244 4.6902416 A: 6 7 var (a); (aa) 29
V629 Sco 11.9 27601.434 3.249126 A 7 7 var   29
V760 Sco 7.04 43250.836 1.7309349 A 59 66 var   156
V881 Sco 8.8 28772.543 2.491561 A 13 13 var   29
V883 Sco 7.39 53685.193 4.3411725 A 22 16 var (a) 1
V923 Sco 5.86 54269.212 34.83865 D 2 3 0.371:   160
V1046 Sco 9.34 48528.240 11.11645 D 5 2 0.474   61
V1067 Sco 10.4 47925.720 12.05336 D 2 3 0.438:   80
V1082 Sco 10.1 52094.431 23.446225 D 9 10 0.340   29
V1195 Sco 8.86 47963.162 4.003050 D 3 2 0.403   61
V1270 Sco 9.17 52441.559 4.243145 A 5 3 var   1
V1284 Sco 9.54 52722.851 3.729446 D 2 1 0.494:   54
V1296 Sco 12.2 52071.815 5.808091 D 2 1 0.448:   79
V1299 Sco 11.7 52501.714 7.694733 D 2 1 0.558:   79
V1301 Sco 13.0 : 53634.577 1.954066 D 2 2 0.551   19
V1303 Sco 11.7 51977.942 11.09423 D 2 1 0.342:   19
V1306 Sco 11.2 52117.205 5.541743 D 2 1 0.372:   5
V1308 Sco 10.4 52549.397 9.106745 D 2 1 0.471:   5
V1611 Sco 13.1 54570.416 10.70732 D 3 2 0.639   161
AL Scl 6.06 43698.483 2.4450873 D 9 3 0.474   162; 163
CG Scl 8.67 52227.518 11.035697 D 4 3 0.487   1
CI Scl 8.78 52558.840 14.710724 D 5 2 0.379   31
CM Scl 8.81 48077.000 10.288588 D 3 2 0.391   6
CR Sct 11.6 28719.496 4.1923465 A: 14 12 var   10
V490 Sct 13.4 27752.726 12.044118 D 9 7 0.324 (ab) 158
V493 Sct 8.49 52560.294 30.811396 D 3 1 0.749:   79
V335 Ser 7.6 50304.420 3.4498775 A 19 12 var   164; 165
V413 Ser 7.95 49038.828 2.259760 A 24 18 var   166
V1094 Tau 8.95 49702.430 8.9885422 D 22 16 0.652   22; 183
V1154 Tau 6.71 52634.367 1.7679018 A: 11 8 var   184
V1260 Tau 10.2 53347.880 5.4308176 D 8 5 0.555   5
V1287 Tau 8.53 53354.145 13.06200 D 3 3 0.412   1
V1356 Tau 10.9 52645.939 12.80737 D 6 7 0.561   64
LU Tel 12.4 53334.598 1.5717434 D 4 2 0.483:   1
V351 Tel 10.0 52104.646 6.447755 D 5 2 0.511:   31
V356 Tel 9.64 52124.206 23.193696 D 2 1 0.470:   54
V359 Tel 8.54 52109.550 19.24494 D 3 2 0.785   19
SS TrA 10.5 52039.370 8.601227 D 7 4 0.207 (a) 86
MN TrA 8.50 48006.315 2.379818 A: 8 9 var   39
MP TrA 7.76 48077.832 2.069725 D 7 2 0.442:   61
NT TrA 9.20 52062.657 3.229993 D 8 5 0.568:   31
PS UMa 12.5 51628.486 9.271883 D 3 3 0.467   19
YZ Vel 12.2 26363.558 5.488359 D 7 8 0.540   124
AO Vel 9.35 45043.661 1.584612 A+III 50 44 var (ac) 14; 168
EO Vel 11.4 41713.900 5.329687 D 14 5 0.609   86
ET Vel 11.9 29778.251 3.080878 A 21 10 var   169
GT Vel 9.7 51874.760 4.670074 A: 12 6 var   80; 86
NT Vel 8.33 52710.148 9.255699 D 4 3 0.598   79
PQ Vel 7.66 48257.640 22.26312 D 4 1 0.584:   31
PT Vel 7.05 48293.487 1.8020232 A 11 7 var   170
V403 Vel 9.63 51981.630 7.2025482 D 4 3 0.515   79
V404 Vel 9.37 52714.580 11.423609 D 2 1 0.493:   31
V409 Vel 12.4 52929.545 2.7867265 D 3 1 0.285:   54
δ Vel 1.96 47830.700 45.15005 D 5 5 0.434   171
WZ Vol 8.31 48692.900 226.2416 D 4 2 0.295   5; 172
BP Vul 10.1 46003.229 1.9403458 A 55 35 var   173
DR Vul 8.65 48989.056 2.2508707 A+III 98 92 var (ac) 24; 127
EQ Vul 11.8 35343.855 9.297184 A 41 50 var   95
FQ Vul 12.3 34238.501 6.262628 A 23 6 var   174
FW Vul 12.7 34706.179 4.5261448 D 9 3 0.496:   1
V399 Vul 7.01 52860.478 4.904902 D 4 2 0.437:   175
V491 Vul 9.94 51510.857 7.6700251 D 5 7 0.337   19
V495 Vul 9.76 54651.500 1.635133 A 16 20 var   176

Note. Remarks: (a) new period; (b) old name: DM Cas; (c) star in the region of the open cluster Tr 18; (d) star in the region of the open cluster NGC 3572; (e) star in the η Carinae Nebula; (f) region of the open cluster NGC 381; (g) star in the region of the open cluster NGC 7790; (h) minima disappear?; (i) star in the region of the open cluster Stock ;, (j) star in the field of the open cluster Stock 14; (k) GCVS identifies the star as NSV 20084 rather than ψ Cen; (l) star in open cluster NGC 6871; (m) elliptical orbit not confirmed; (n) star in open cluster NGC 6819; (o) star in quadruple or quintuple system; (p) incorrect name: KM Hya (see: IBVS 2015); (q) probable member of the open cluster NGC 7209; (r) minima disappear; (s) KIC 6766748; (t) in NGC 2244; (u) RR-type in the GCVS; (v) in NGC 2264; (w) star in the region of the open cluster Stock 2; (x) ISB:—type in the GCVS 5.1; (y) uncertain, two minima only; (z) old name: VV Pyx; (aa) star in the region of the open cluster CR 338; (ab) old name: V1049 Sgr; (ac) quadruple system.

References. (1) This paper; (2) Crawford et al. (1984), (3) Husar (2005), (4) Nakajima et al. (2006), (5) Otero & Wils (2005a), (6) Otero & Wils (2005b), (7) Bulut (2009), (8) Volkov & Chochol (2014), (9) Southworth (2013), (10) Wolf et al. (2004), (11) Wolf et al. (2005), (12) Lloyd et al. (2002), (13) İbanoǧlu et al. (2007), (14) Wolf & Zejda (2005), (15) Hauck (2011a), (16) Clausen et al. (2001), (17) Wolf et al. (2011), (18) Sipahi & Dal (2013), (19) Otero et al. (2006), (20) Glazunova (2011), (21) Volkov et al. (2011), (22) Wolf et al. (2010a), (23) Imbert (1987), (24) Bozkurt & Değirmenci (2007), (25) Otero (2008), (26) Khruslov (2010), (27) Sowell et al. (2012), (28) Clausen et al. (2008), (29) Zasche (2012a), (30) Bakış (2015), (31) Otero & Dubovsky (2004), (32) Bakış et al. (2010), (33) Otero (2004), (34) Diethelm (2011), (35) Liška et al. (2013), (36) Andersen & Clausen (1989), (37) Wolf et al. (2008), (38) Woodward & Koch (1993), (39) Bulut & Demircan (2008), (40) Otero (2006), (41) Krylov et al. (2003), (42) Cowley et al. (1977), (43) Walter (2012), (44) Lacy et al. (2004), (45) Švaříček et al. (2008), (46) Yıldız (2005), (47) Kjurkchieva et al. (2007), (48) Guinan et al. (2012), (49) Wolf et al. (2010d), (50) Dariush et al. (2006), (51) Bulut et al. (2006), (52) Wolf et al. (2013), (53) Bulut (2013), (54) Otero et al. (2005), (55) Andersen et al. (1987); (56) Kozyreva et al. (2013), (57) Söderhjelm (1975), (58) Giménez et al. (1986), (59) Uitterdijk (1936), (60) de Kort (1937a), (61) Otero (2003), (62) Mayer et al. (2010a), (63) Khaliullin et al. (2006), (64) Otero et al. (2004), (65) Bruntt et al. (2006), (66) Wolf et al. (2006b), (67) Han et al. (2015), (68) Giménez & Margrave (1985), (69) Lacy et al. (2006), (70) Ahn (1992), (71) Henden et al. (1999), (72) Bakış et al. (2008b), (73) Bulut & Bulut (2015), (74) Kozyreva & Kusakin (2016), (75) Volkov et al. (2015), (76) Kozyreva & Kusakin (2014), (77) Dvorak (2004), (78) Paschke (2006), (79) Otero & Claus (2004), (80) Hoogeveen (2005), (81) Volkov (2005), (82) Schmitt et al. (2016), (83) Fekel et al. (2013), (84) Oosterhoff & van Houten (1949), (85) de Kort (1937b), (86) Shivvers et al. (2014), (87) Clausen et al. (2007), (88) Harmanec et al. (2014), (89) Wolf (2009), (90) Tkachenko et al. (2014), (91) Claret & Giménez (2010), (92) Zasche & Wolf (2011), (93) Diethelm (1993), (94) Kuznetsov et al. (2011), (95) Wolf et al. (1998), (96) Wetterer et al. (2006), (97) Meinunger (1968), (98) Hill & Fisher (1984), (99) Çakırlı (2015), (100) İbanoǧlu et al. (2008), (101) Dumont et al. (2011), (102) Gómez-Forrellad et al. (2003), (103) Lacy et al. (2012b), (104) Morales et al. (2009), (105) Dallaporta et al. (2000), (106) Milone et al. (2010), (107) Volkov & Volkova (2009), (108) Goranskij et al. (2005), (109) Galan C. et al. (2008); (110) Claret et al. (2010), (111) Khaliullin & Khaliullina (2006), (112) Torres et al. (2009), (113) Lacy & Fekel (2014), (114) Zasche & Uhlař (2016), (115) Khaliullin & Kozyreva (1989), (116) Andersen & Vaz (1984), (117) Wolf et al. (2006a), (118) Milone et al. (2000), (119) Zasche (2010), (120) Kozyreva & Khaliullin (2007), (121) Agerer & Berthold (2005), (122) Kozyreva et al. (2005), (123) Kasai & Nagai (2016), (124) Hegedüs (1988), (125) Bulut & Demircan (2006), (126) Khaliullin et al. (2001), (127) Wolf et al. (1999), (128) Wolf et al. (2010c), (129) Torres et al. (2015), (130) Hassforther (2004), (131) Pribulla et al. (2010), (132) Garcia et al. (2011), (133) de Kort (1954), (134) Zasche et al. (2011), (135) Otero (2007), (136) Wolf et al. (2001), (137) Volkov & Volkova (2010), (138) Harmanec et al. (2011), (139) Sabby et al. (2011), (140) Torres et al. (2014), (141) Mayer et al. (2010b), (142) Pablo et al. (2015), (143) Achterberg et al. (2000), (144) Clausen et al. (2010), (145) Lacy et al. (2015), (146) Khruslov (2006), (147) Janík et al. (2003), (148) Siviero et al. (2010), (149) Paschke (2015), (150) Zasche (2012b), (151) Kirkby-Kent et al. (2016), (152) Zasche & Wolf (2007), (153) Zasche et al. (2015), (154) Bulut et al. (2014), (155) Andersen et al. (1984), (156) Wolf (2000), (157) Wolf et al. (2006c), (158) Uitterdijk (1949), (159) Kazarovets & Pastukhova (2013), (160) Fekel et al. (2011), (161) Kazarovets & Pastukhova (2012), (162) Haefner (1981), (163) de Groot (1985), (164) Bozkurt (2011), (165) Lacy et al. (2012a), (166) Çakırlı et al. (2008), (167) Otero (2005), (168) Bulut et al. (2011), (169) Zasche (2009), (170) Bakış et al. (2008a), (171) Pribulla et al. (2011), (172) Hauck (2011b), (173) Csizmadia et al. (2009), (174) Petrova & Orlov (1999), (175) Çakırlı et al. (2012), (176) Soydugan et al. (2015), (177) Claret et al. (1995), (178) Guinan et al. (2000), (179) Mayer et al. (2016), (180) Torres (2001), (181) Torres et al. (2017), (182) Volkov et al. (2010), (183) Maxted et al. (2015), (184) Dallaporta et al. (2003), (185) Ogłoza & Zakrzewski (2004), (186) Wolf et al. (2010b), (187) Söderhjelm (1974), (188) Vaz & Andersen (1984), (189) Khruslov (2012), (190) Khruslov (2011), (191) Khruslov (2007), (192) Volkov et al. (2017), (193) Wolf et al. (2017), (194) Hoyman et al. (2018).

Download table as:  ASCIITypeset images: 1 2 3 4 5 6 7

Table 4.  Eclipsing Binaries with Elliptical Orbits without GCVS Names

Name Max. Mag.(B) T0 Period Type Number Phase Remarka References
  (SIMBAD) (HJD2400000+) (day)   Pri Sec      
2MASS J00372334+4719206 14.1 53277.868 5.8620643 D 4 4 0.519   14
2MASS J00435925+5114000 13.1 53278.014 2.3588705 D 6 5 0.522   14
2MASS J00470861+5037193 12.2 53277.304 2.2171898 D 17 15 0.640   14
2MASS J00471033+5045123 14.1 53278.518 3.2845636 D 5 5 0.554   14
2MASS J00582982+4925088 15.8 52903.336 18.002176 D 2 3 0.552   14
2MASS J01100914+4818196 15.6 52909.251 11.415996 D 3 2 0.511:   14
2MASS J01173524+4946169 14.2 52905.608 7.8660747 D 5 2 0.504:   14
2MASS J01552928+3750262 10.3 54040.793 15.535326 D 5 1 0.857: (a) 6
2MASS J02362545−7058141 11.6 54599.349 23.304104 D 2 2 0.212   1
2MASS J03040429−3847265 11.2 53529.425 9.4222528 D 6 4 0.530   1
2MASS J03111389−7402395 11.2 54327.868 28.965206 D 2 2 0.378   1
2MASS J03314391+3631523 12.0 53360.246 3.6474665 D 11 10 0.486   14
2MASS J03341943+3932444 9.85 53353.152 8.4717939 D 2 1 0.462:   14
2MASS J03353366+4000491 14.0 53361.452 4.0698441 D 20 8 0.495   14
2MASS J03404564+3447572 15.8 53358.946 3.9449363 D 4 4 0.479   14
2MASS J03475647+3731318 15.1 53356.360 4.2466720 D 8 8 0.347   14
2MASS J03520066+4003477 14.1 53356.897 4.4568511 D 11 11 0.456   14
2MASS J04223522−4129001 11.1 54040.623 17.554555 D 4 4 0.166   1
2MASS J04233735+2546360 14.7 53735.316 3.2174300 A:+III 8 8 var   14
2MASS J04370204+4205520 11.0 54371.714 1.4547185 A: 12 8 var   12
2MASS J05035114−1541539 10.3 52520.535 7.2792229 D 2 2 0.378:   4
2MASS J05175294−5406053 10.9 52514.755 26.131315 D 2 2 0.698   1
2MASS J05542642+2236022 10.9 53509.897 9.3968497 D 4 3 0.458   1
2MASS J05581929−1446398 12.1 54144.979 6.4048907 D 2 2 0.596   1
2MASS J06071859+1331458 9.52 53172.249 5.0779738 D 2 2 0.364   4
2MASS J06101649−3321209 11.3 54327.82 199.90075 D 5 3 0.428   4
2MASS J06172735+1100176 11.4 53287.061 15.719375 D 2 2 0.667:   4
2MASS J06194134−1107556 11.4 52602.372 2.5891690 D 3 3 0.441   1
2MASS J06200484+0454446 9.32 54520.575 5.9415040 D 2 2 0.615   4
2MASS J06211443−0534451 13.08 54249.729 2.4638010 D 2 2 0.352   4
2MASS J06242824+1217124 8.7 53233.219 5.6351910 D 2 2 0.543   1
2MASS J06275377+0028136 9.9 53059.628 2.9425503 D 2 2 0.482   1
2MASS J06292635−2513294 12.0 54355.995 26.381464 D 3 4 0.365   4
2MASS J06300270−4959171 8.64 52613.483 41.744017 D 2 2 0.686   4
2MASS J06320180−6750381 11.2 52657.284 5.8190621 D 2 2 0.566   4
2MASS J06335056+0501376 11.6 33701.422 25.951174 D 2 2 0.265 (b) 6
2MASS J06405707−2637345 11.0 53862.961 12.445562 D 4 4 0.669   4
2MASS J06430543−0034399 13.3 51618.030 28.917630 D 2 1 0.210:   9
2MASS J06445048−1454157 10.4 52673.582 7.3490852 D 2 2 0.557   1
2MASS J06460938−1923500 8.8 52480.426 2.9039009 D 4 3 0.520   17
2MASS J06475256−1642563 10.6 52785.075 1.8434251 D 3 3 0.423   4
2MASS J06492563−0013367 10.9 52726.890 2.1959315 D 3 3 0.538   1
2MASS J06500763−1351306 10.6 52338.601 1.8238679 D 3 3 0.535   1
2MASS J06531687−1935083 8.9 54339.676 17.777981 D 2 2 0.874   1
2MASS J06574910−0014333 11.2 54278.208 8.2278077 D 2 2 0.847   1
2MASS J07012704−0307032 7.57 52979.874 21.963929 D 2 2 0.296   4
2MASS J07060295−0928283 9.64 54303.477 11.639631 D 2 2 0.508   1
2MASS J07065419−1020296 10.6 52680.242 3.3773007 D 3 3 0.522   1
2MASS J07091421−0707589 11.6 54634.746 5.8660315 D 4 4 0.479   1
2MASS J07151012−2259093 9.0 53414.227 5.5131170 D 2 2 0.775   1
2MASS J07203341−4616474 10.5 54538.652 57.851780 D 2 2 0.528   1
2MASS J07205622+0326048 11.1 54266.832 18.955264 D 2 2 0.407   1
2MASS J07222169−1159457 9.04 52554.315 13.014502 D 2 2 0.682   4
2MASS J07251501−1135496 10.6 53368.994 4.5099820 A 6 6 var   13; 4
2MASS J07255988−1741490 11.0 54302.834 28.879732 D 2 2 0.239   1
2MASS J07290342−1525227 10.8 54305.245 8.8511191 D 2 2 0.374   4
2MASS J07303245−1611383 12.7 54306.718 2.6862032 D 3 3 0.336   4
2MASS J07321787−1436291 11.2 53422.143 8.1779105 D 3 3 0.418   4
2MASS J07330825−0532311 11.1 52896.065 26.916869 D 1 2 0.431:   1
2MASS J07360305−5710149 11.9 52390.174 2.7642236 D 3 3 0.470   1
2MASS J07361070−3123217 11.0 54418.189 8.8552171 D 2 2 0.697   4
2MASS J07412319+0253210 11.7 53275.653 8.5992814 D 3 2 0.564   4
2MASS J07440045−3105246 10.6 54157.714 6.2041862 D 2 2 0.701   4
2MASS J07484467−3801481 10.6 52332.984 3.2050360 D 3 3 0.475   1
2MASS J07493519−2415509 11.0 54443.404 7.2735586 D 2 2 0.198   4
2MASS J07505239+0048040 9.36 54390.442 2.0543260 D 3 4 0.419   4
2MASS J07520655−3032111 10.7 54402.181 10.693038 D 2 2 0.616   4
2MASS J07594157−1411076 12.5 54289.867 4.4057816 D 2 2 0.699   4
2MASS J08065094−4503020 9.8 52620.104 3.6285890 D 2 2 0.599   1
2MASS J08114480−2519465 10.0 54481.332 9.7998670 D 2 2 0.725   4
2MASS J08123735−1356531 12.1 52570.282 9.6467758 D 3 3 0.408   4
2MASS J08163100−3314381 11.4 52586.186 189.30119 D 2 2 0.384   1
2MASS J08173168−6043507 10.5 52657.197 8.3773516 D 2 2 0.639   4
2MASS J08185532−3612483 10.9 54264.455 9.3534665 D 3 3 0.395   4
2MASS J08242802−4525115 11.8 52634.641 3.4510924 D 2 2 0.655   4
2MASS J08314982−1529000 11.5 52523.616 8.7408869 D 3 3 0.367   4
2MASS J08340056−3431241 10.6 54345.918 3.1376346 D 2 3 0.697   4
2MASS J08355532−2755526 9.2 54302.757 16.373716 D 2 2 0.528   1
2MASS J08361133−4547386 10.4 52420.444 6.9555034 D 2 2 0.283   4
2MASS J08404888−4259265 9.5 52657.915 13.797958 D 2 2 0.476   1
2MASS J08442378−3715247 10.6 54372.683 5.7287784 D 2 2 0.619   4
2MASS J08450318−4112597 10.0 52653.335 2.0665963 D 2 2 0.582 (c) 4
2MASS J08453462−2158013 13.0 54402.438 11.042005 D 2 3 0.861   1
2MASS J08515414−4231396 12.0 53409.404 36.783930 D 2 2 0.611   1
2MASS J08542696−4134581 11.0 54381.433 3.4523128 D 2 2 0.401   4
2MASS J09023164−5653225 11.0 53693.985 20.822341 D 2 2 0.507   1
2MASS J09122733−3801412 12.0 54027.800 4.6252704 D 4 3 0.413   4
2MASS J09131290−4744240 10.3 54311.133 2.4159664 D 2 2 0.404   4
2MASS J09170374−5454045 10.8 54220.066 12.354960 D 2 2 0.304:   4
2MASS J09181467−3350293 9.44 54106.214 7.9006282 D 6 2 0.656   11
2MASS J09245390−7128195 11.16 54192.195 6.2940346 D 2 2 0.720   1
2MASS J09262232−5258402 10.0 52760.207 2.3154122 D 2 2 0.491   1
2MASS J09305154−3234215 10.0 54457.346 4.0217218 D 6 7 0.409   4
2MASS J09315590−2656448 10.5 53819.011 17.012082 D 5 3 0.602   1
2MASS J09345147−5424158 11.0 52467.340 2.8424552 D 3 3 0.488:   1
2MASS J09481015−5117218 9.75 53830.355 7.1491716 D 2 2 0.392   4
2MASS J09533771+5245447 16.9 53449.170 9.5528882 D 3 3 0.598   14
2MASS J10010408−5847259 10.1 53477.874 14.320070 D 3 3 0.611   4
2MASS J10024347−5643283 11.9 52806.140 10.940051 D 2 2 0.324   4
2MASS J10042062−3319007 10.1 54145.853 6.7148901 D 9 10 0.583   4; 11
2MASS J10043150−6921202 9.54 53418.870 11.510612 D 3 2 0.220   1
2MASS J10043285−6315432 9.3 54398.316 13.807582 D 2 2 0.778   4
2MASS J10062533−5500446 11.5 54235.230 4.4111902 D 2 2 0.712   4
2MASS J10200389−5737255 11.4 52772.304 13.126427 D 2 2 0.537   1
2MASS J10273191−6400217 10.9 54269.989 5.6468958 D 2 2 0.602   4
2MASS J10344865−6013038 10.0 52945.824 7.5937321 D 2 2 0.393   4
2MASS J10370007−6530057 10.0 53697.532 16.972508 D 2 2 0.777   1
2MASS J10471675−5453183 10.1 54420.492 2.4320280 D 2 2 0.570   1
2MASS J10491406−6744502 11.9 53385.567 13.181955 D 2 2 0.534   1
2MASS J10583499+0329220 12.2 53223.917 24.373083 D 2 2 0.617:   4
2MASS J10591890−5845044 11.8 52449.255 2.8498240 D 3 3 0.455   1
2MASS J10593360−5844304 11.6 54364.334 2.8498169 D 2 2 0.457   1
2MASS J11061317−3158400 12.4 53186.571 7.3017854 D 7 5 0.274   1
2MASS J11081163−3014401 11.3 52686.863 6.2149254 D 6 6 0.329   4
2MASS J11101237−6051471 9.52 54500.061 5.3829054 D 2 2 0.685   4
2MASS J11113415−4956110 8.71 52829.356 7.7357413 D 2 2 0.482   1
2MASS J11150698−4815333 12.1 54369.074 6.7867640 D 2 2 0.580   4
2MASS J11214548−0850136 11.3 54395.241 8.3687688 D 3 3 0.574   4
2MASS J11255084−5922107 10.5 52853.249 4.5563989 D 2 2 0.530   1
2MASS J11292643−6201579 11.5 52497.398 3.2247787 A: 3 3 var   4
2MASS J11351107−5254405 12.0 54556.771 6.7940023 D 2 2 0.411   1
2MASS J11421027−6129302 11.5 52691.987 4.3010512 D 2 2 0.455   1
2MASS J11500699−6425050 11.2 52912.366 6.9052344 D 2 2 0.570:   4
2MASS J12022247−3122251 11.2 53451.984 15.514517 D 4 5 0.314   1
2MASS J12035553−6303028 9.7 53821.882 48.338320 D 2 2 0.504:   1
2MASS J12043357−5241389 10.2 53689.770 7.8944208 D 3 2 0.537   1
2MASS J12053548−6209562 11.2 53871.120 9.9014342 D 2 2 0.437   1
2MASS J12254009−6337334 9.46 52692.641 3.0815849 D 2 2 0.640   4
2MASS J12272884−6412054 12.2 52683.658 15.803677 D 2 2 0.694:   4
2MASS J12274253−6223576 11.4 54252.298 15.550227 D 2 2 0.326   4
2MASS J12482920−6652312 11.3 53577.975 16.504029 D 2 2 0.467   1
2MASS J12515020−4249201 11.4 53943.323 15.723133 D 5 4 0.587   1
2MASS J12542625−5918096 10.3 52521.213 3.0489425 D 3 3 0.472   1
2MASS J13200195−6144515 10.6 52812.115 7.3082481 D 2 2 0.257   4
2MASS J13222883−3925543 11.1 52906.820 5.8121319 D 7 6 0.489   1
2MASS J13353298−5214286 10.7 54229.332 11.440486 D 2 2 0.676 (d) 4
2MASS J13521648−3351386 10.2 54547.058 2.5416458 D 4 1 0.569:   11
2MASS J13581727−3004356 9.06 54224.573 10.286937 D 4 5 0.606   4
2MASS J14055562−6143592 9.84 52413.180 2.1854308 D 3 3 0.460   1
2MASS J14073719−6957341 10.4 54494.875 6.5165640 D 2 2 0.406   4
2MASS J14080858−5906145 11.0 53485.256 8.0909048 D 3 3 0.527   1
2MASS J14163937−4854118 9.8 54253.579 7.6615686 D 2 2 0.559   1
2MASS J14172205−6247429 10.1 52495.357 2.3125837 D 3 3 0.472   1
2MASS J14192329−4642211 11.8 54162.238 7.0807075 D 3 3 0.395   1
2MASS J14230017−4635290 9.91 52174.986 2.2740250 D 10 9 0.461   1
2MASS J14262665−6108242 10.7 54367.615 20.492228 D 2 2 0.257   1
2MASS J14265471−5821490 11.3 52510.141 2.4699821 D 3 3 0.485:   1
2MASS J14265505−6735180 11.2 52489.848 3.8768492 D 3 3 0.573   4
2MASS J14293254−6014360 11.5 54388.346 14.167995 D 2 2 0.778   4
2MASS J14394430−2837082 9.36 46136.620 16.365063 D 4 5 0.442   11
2MASS J14424230−5904033 10.1 54674.766 7.2727806 D 2 2 0.878   4
2MASS J14444107−7721530 12.5 52554.874 10.022060 D 2 2 0.327   4
2MASS J15004561−5014530 8.57 52568.645 9.2879924 D 2 2 0.566   4
2MASS J15053934−6845552 9.35 54383.760 5.4939459 D 2 2 0.492   1
2MASS J15130781−2504191 12.0 54569.958 12.725384 D 4 4 0.696   4
2MASS J15150986−5928476 10.9 52684.398 8.7058893 D 2 2 0.610   4
2MASS J15154331−2035266 10.8 52785.415 17.208106 D 4 4 0.288   4
2MASS J15184839−4942140 11.8 52945.651 21.075039 D 2 2 0.469   1
2MASS J15261758−2459188 9.26 52697.568 7.0694570 D 6 4 0.478   1
2MASS J15291701−7230462 10.3 54480.571 37.715870 D 2 2 0.479   1
2MASS J15325748+7042157 9.41 56423.591 16.25672 D 2 3 0.544   10
2MASS J15391113−6259184 10.5 52744.268 8.0903098 D 2 2 0.534   1
2MASS J15450311−5249284 9.74 52768.813 2.9053469 D 2 2 0.529   1
2MASS J15495183−2323182 11.4 53902.202 8.0185848 D 5 4 0.479   1
2MASS J15502226−5653002 11.0 52986.084 7.8919824 D 2 2 0.472   1
2MASS J16021189−4442468 10.9 52397.375 4.1740043 D 3 3 0.436   1
2MASS J16111795+3307131 13.3 53505.897 8.2836696 A: 3 5 var   7
2MASS J16170981−3840536 11.0 52528.618 3.4875993 D 6 6 0.532   1
2MASS J16475143−4158417 10.0 52444.177 2.0366694 D 3 3 0.476:   1
2MASS J16475313−3239388 12.1 52817.596 3.9442377 D 2 2 0.681   4
2MASS J16533637−4615536 11.6 52705.289 2.3302075 D 2 2 0.577   4
2MASS J16535419−1301575 10.6 54111.192 2.2075680 D 4 3 0.373   4
2MASS J17033584−3638466 11.0 52569.618 7.3946798 D 2 2 0.403   1
2MASS J17114503−2819017 11.4 53367.497 3.1451058 D 2 2 0.655   4
2MASS J17203361−4206111 10.7 54340.654 5.5397338 D 2 2 0.565   4
2MASS J17260899+0659294 10.5 53238.060 3.0409480 D 2 2 0.556   1
2MASS J17331903−4315014 9.83 54431.938 12.776436 D 2 2 0.622   4
2MASS J17533294−2031094 12.2 54126.515 3.3157120 D 3 3 0.317   4
2MASS J17562956−5509415 11.2 54470.025 11.178200 D 2 2 0.564   4
2MASS J18001019−2353463 11.0 52622.813 9.9213567 D 2 2 0.566   1
2MASS J18041338−1557195 11.4 53920.657 49.109261 D 2 1 0.485:   1
2MASS J18074355−2712020 9.98 54259.971 6.9237241 D 2 2 0.349   4
2MASS J18081458−1712030 11.6 54245.281 3.3342176 D 2 2 0.654   4
2MASS J18090792−2128247 11.0 53892.931 2.2703680 D 6 6 0.376   3; 4
2MASS J18142442−3713180 11.4 52842.977 4.4719694 D 2 2 0.548   1
2MASS J18155492−1826008 8.50 52797.310 4.6717110 D 2 2 0.508   1
2MASS J18271844+1908333 12.0 54529.986 7.1461186 D 5 4 0.543   18
2MASS J18302058−0923095 12.0 54229.629 20.122794 D 3 3 0.338   4
2MASS J18311343−4917286 11.4 52491.381 8.6973910 D 2 2 0.254   1
2MASS J18323477−3314408 10.2 52785.544 3.6898498 D 2 2 0.627   4
2MASS J18325868−3125437 10.1 52823.939 6.5302464 D 2 2 0.540   1
2MASS J18335606−2922420 11.0 52814.176 14.897254 D 2 2 0.630   4
2MASS J18370026−4855284 10.4 52610.720 2.3904736 D 3 3 0.472   1
2MASS J18432690+0841321 10.3 53147.312 2.1391991 D 4 3 0.460   17
2MASS J18510539−1818454 11.5 54642.164 4.5623731 D 3 2 0.249   4
2MASS J18524030+0403118 8.14 54204.752 3.6570666 D 3 1 0.538:   2
2MASS J18574027+4840512 14.6 53579.568 8.0495909 D 4 2 0.624 (e) 14
2MASS J18590844+4836000 14.6 35807.296 11.631838 D 6 3 0.360 (f) 14
2MASS J18594647−4740371 11.9 52817.226 4.6946372 D 2 2 0.474   1
2MASS J18595128−4711476 11.8 54207.653 2.8776812 D 2 2 0.600   4
2MASS J19033272+3941003 11.0 55341.769 2.1891140 A: 44 44 var (g) 5; 16
2MASS J19034114+4736557 14.5 53582.237 40.043374 D 4 2 0.122 (h) 14
2MASS J19042153−3411509 10.6 53903.644 5.0208198 D 4 6 0.552   11
2MASS J19062655+4828470 14.8 53577.881 6.6403103 D 4 7 0.477 (i) 14
2MASS J19105428+4926069 15.7 53576.493 12.318191 D 1 3 0.630: (j) 14
2MASS J19304303−0615348 11.6 54541.818 7.2765349 D 3 3 0.595   4
2MASS J19372693+0321445 10.8 52881.947 3.2884026 D 3 3 0.527:   1
2MASS J19393409−1739553 11.6 54623.447 10.703580 D 3 3 0.371   4
2MASS J19411609+1301187 9.94 53255.645 1.5609128 D 3 3 0.587   4
2MASS J19534199+0205213 9.58 53563.388 1.6081244 D 3 4 0.476   17
2MASS J19544593+5024053 14.0 53210.725 6.0559005 D 3 3 0.395 (k) 14
2MASS J19554410+5213346 12.2 53210.408 4.4359437 D 9 6 0.497 (l) 14
2MASS J19561308+1630560 9.98 54220.421 3.4445896 D 3 3 0.496   17
2MASS J19585801+4738192 13.7 53211.416 4.9252380 D 11 13 0.505 (m) 14
2MASS J19592592+5223599 11.6 53203.328 11.608127 D 5 6 0.512 (n) 14
2MASS J20020438+4734147 13.7 53212.898 5.5989031 A: 5 4 var (o) 14
2MASS J20030311+5242041 11.6 53207.175 14.507469 D 1 2 0.506: (p) 14
2MASS J20072552+5222005 12.9 53215.332 6.5133398 D 8 2 0.495 (q) 14
2MASS J20093821+4905080 11.9 53207.296 12.440529 D 4 2 0.719: (r) 14
2MASS J20104420+5107517 13.5 53211.541 4.5497242 D 6 3 0.467 (s) 14
2MASS J20104691+4909294 14.1 53208.569 11.619160 D 3 4 0.694 (t) 14
2MASS J20135245+5052231 14.2 53201.858 9.3572418 D 3 1 0.344: (u) 14
2MASS J20321743+5053479 12.5 56374.966 10.89924 D 3 3 0.409   21
2MASS J20564198+1153023 9.16 54668.305 4.1243839 D 4 3 0.615   4
2MASS J21245175+1916139 11.7 53127.869 3.2130647 D 4 4 0.525   1
2MASS J21264316−0031104 11.7 52910.608 8.3588725 D 4 4 0.574   1
2MASS J21334898−0720407 11.7 51508.478 32.396226 D 2 3 0.653   1
2MASS J21544298+0410320 11.7 54589.468 6.9575534 D 4 4 0.557   1
2MASS J22250315−5348368 8.9 53482.540 8.8834455 D 2 3 0.404   1
2MASS J22335143−2351527 11.6 54540.388 10.351715 D 5 5 0.516   1
2MASS J23303493+6633457 11.8 51478.665 6.5590377 D 2 2 0.528:   15
ASAS J054218+2003.7 11.3(V) 54387.881 5.1158842 D 3 3 0.389   4
ASAS J134702−6237.1 12.1(V) 54389.100 3.8729838 D 2 2 0.695 (v) 4
ASAS J151146−5416.4 12.9(V) 54489.723 2.7021281 D 2 2 0.587   4
ASAS J152227−4718.6 11.7(V) 53024.818 24.215083 D 2 2 0.360   4
ASAS J173941−3002.5 10.3(V) 52407.597 2.9697027 D 3 3 0.436   1
NGC 6362 V40 18.8 53915.586 5.2961754 D 4 8 0.529   19
NGC 6809 V54 18.7 50663.463 9.2691571 D 8 1 0.454:   20
NGC 7142 CT 18 16.1 53637.504 15.650400 D 7 3 0.220 (w) 8

Note.

a(a) Member NGC 752; (b) star in cluster NGC 2244; (c) star in open cluster Cr 197; (d) it may be also be identified as 2MASS J13353299−5214287, due to its distance of 0.1 arcsec and the similar magnitude; (e) KIC 11071207; (f) KIC 11071776; (g) KIC 4544587; (h) KIC 10457553; (i) KIC 10965963; (j) KIC 11499757; (k) KIC 12028095; (l) KIC 12903449; (m) KIC 10494460; (n) KIC 12955326; (o) KIC 10431516; (p) KIC 13151640; (q) KIC 12960819; (r) KIC 11324171; (s) KIC 12383145; (t) KIC 11378051; (u) KIC 12236768; (v) very close to V766 Cen; (w) star V2 near NGC 7142.

References.  (1) This paper; (2) Maceroni et al. (2009), (3) Rucinski et al. (2007), (4) Shivvers et al. (2014), (5) Gies et al. (2012), (6) Pribulla et al. (2010), (7) Sokolovsky et al. (2011), (8) Sandquist et al. (2013), (9) Maciel et al. (2011), (10) Davies (2015), (11) Smalley et al. (2014), (12) Moschner et al. (2015), (13) Diethelm (2012), (14) Devor et al. (2008), (15) Volkov et al. (2015), (16) Hambleton et al. (2013), (17) Williams et al. (2011), (18) Otero (2004), (19) Kaluzny et al. (2015), (20) Kaluzny et al. (2014), (21) Popov et al. (2015).

Download table as:  ASCIITypeset images: 1 2 3 4

Usually, the timings were obtained with the method of Kwee & van Woerden (1956, hereafter KW), but some of them were determined with the graphical method described by Szafraniec (1948). A total of 2830 new times of minima for 571 EEB stars were determined and are listed in Table 1 for the stars with GCVS names and in Table 2 for those without GCVS names, which are given in full in the electronic version of the paper.

2.2. New Observations

New observations of minima of selected systems were made at the Mt. Suhora Observatory, Pedagogical University of Cracow, Poland6 and at the Sobaeksan Optical Astronomical Observatory, Republic of Korea.7 Three instruments were used at the Mt. Suhora Observatory:

  • 1.  
    The 0.6 m Zeiss telescope with an Apogee Aspen Camera located at the primary focus.
  • 2.  
    The 20 cm Ritchey–Chretien telescope with a SBIG-ST10XME.
  • 3.  
    The portable 3 cm wide-field objective with an Atik 314L. This instrument was also used by one of us (W.O.) at the South African Astronomical Observatory for observations of the southern hemisphere targets.

The times of minima were computed with the KW method and a digital implementation of the graphical method of Szafraniec (1948).

At the Sobaeksan Optical Astronomical Observatory, a 61 cm Boller and Chivens telescope was used. A PIXIS 2K CCD for the observing seasons of 2009−2011 and an FLI 4K CCD for observations between 2015 and 2017 were used, respectively. Times of minima were computed with the KW method. A part of them (a total of 164 minima) were published by Ogłoza et al. (2017) and Kim et al. (2017).

2.3. EBs with Elliptical Orbits and Their Classification

In all, 623 galactic EB systems with an eccentric orbit are finally compiled with more than 13,400 times of minimum lights. The systems are divided into two groups according to whether a system has a GCVS name or not: a total of 384 systems with a GCVS name are presented in Table 3, and 239 systems without a GCVS name are presented in Table 4.

Finally, the systems in each group are further divided into three categories (D, A, and A+III) on the basis of the OC behaviors of the primary and secondary timings in each of the ETDs: 453 D systems show just constantly displaced secondary minima relative to primary ones, 139 A systems display the AM effect alone, and 31 (A+III) systems exhibit a combined form of AM and a LITE due to a tertiary body gravitationally bound to the system.

The basic data for all the EEB stars are listed together with their representative references in Tables 3 and 4. Usually, the references reported in Tables 3 and 4 include information about the discovery of displaced secondary minimum and/or orbital parameters of an EEB star.

Table 3 contains a list of 384 EBs with GCVS names (GCVS catalog ver 5.1, Samus et al. 2017) having elliptical orbits confirmed by their ETDs, and we present the following data:

  • (1)  
    The system name.
  • (2)  
    The approximate brightness at the maximum.
  • (3)  
    The initial epoch of the minimum used in the construction of the ETD. Note: T0 is not an observational time of the primary minimum but a mean epoch of primary and secondary minima.
  • (4)  
    The period used to construct the ETD was taken from the TIDAK database. Please note that the period P in the table cannot be used for the prediction of future times of the primary or secondary minima.
  • (5)  
    Type (see the text for explanation).
  • (6)  
    The number of primary minima taken from the TIDAK database (see Section 2.1).
  • (7)  
    The number of secondary minima taken from the TIDAK database.
  • (8)  
    The phase of the secondary minimum (only for D type stars) expressed as a fraction of the period (a colon implies that the value may be uncertain).
  • (9)  
    Remarks. Some EBs (among them, QX Cas, SS Lac, and AY Mus) have no eclipses due to the change in their orbital inclinations (cf. Zasche & Paschke 2012).
  • (10)  
    References are listed at the bottom of Table 3.

Table 4 contains 239 stars with temporary names and in the first column we list the provisional names of the systems. The elliptical orbits of these stars were confirmed by their ETDs. The names of systems were mostly taken from the 2MASS (2Micron All-Sky Survey, Cutri et al. 2003) catalog, where the numbers of the stars contain their coordinates (given for the epoch of 2000). Five stars have ASAS names (Pojmański 2002) and three stars have their own numbers in open or globular clusters. The headings of the remaining columns (3−10) have the same meanings as those in Table 3.

3. Calculation of AM and LITE Parameters

For 139 A and 31 (A+III) systems, we calculated their AM parameters and their AM plus LITE parameters, respectively, by using the following formula:

Equation (1)

where T0, Ps, τap, and τ3 are the initial epoch, the sidereal period, the AM term, and the LITE term, respectively. For the A systems, only the first three terms (T0, Ps, and τap) in Equation (1) were used, whereas all terms were computed for the (A+III) systems. The full expression of τap is taken from Equations (15)−(21) in the paper of Giménez & Bastero (1995) and has four unknowns of the anomalistic period (Pa), the rotation rate of the periastron longitude per cycle ($\dot{\omega }$, or the AM rate per cycle), the longitude of the periastron point at T0 (ω0), and the eccentricity (e). The longitude of periastron (ω) at any cycle E is expressed as follows:

Equation (2)

Ps is derived from Pa as follows:

Equation (3)

The standard expression of τ3 was given by Irwin (1952, 1959) and has five conventional parameters (a12 sin i3, e3, ω12, P3, and T3). All timings for each of the systems were fitted to Equation (1) to determine the five unknowns for the A systems and the 10 unknowns for the (A+III) systems. The Levenberg−Marquardt iterative least-squares method (Press et al. 1992) was used to solve for the free parameters that are eventually compiled into our catalog. In the calculations, the eccentricities for 37 systems were fixed to those obtained from their light curves and/or radial velocity curves because the time intervals of their timing data are considerably shorter than their apsidal periods and thus the adjusted eccentricities were erroneously different from the published ones.

Table 5 contains the results from computations for the stars exhibiting AM. Columns 2 and 3 denote the numbers of primary and secondary minima used in the calculation. Some minima from TIDAK were not included in the calculations due to their large observational uncertainties. Columns 3 ∼ 10 contain, in turn, reference epoch T0 in Heliocentric Julian Date, sidereal period Ps in days, anomalistic period Pa in days, rotation rate of the periastron longitude $\dot{\omega }$ in degree/cycle, longitude of the periastron point ω0 at T0 in degrees, orbital eccentricity e, and the AM period U in years. In the last column, we listed the semi-amplitude (Kap) of the theoretical AM curves in days. The numbers in brackets are the uncertainties of the calculated parameters. The "*" symbol in the brackets for the eccentricity means that the eccentricity was, during the calculation, fixed at the value taken from the literature.

Table 5.  Parameters of Apsidal Motion Obtained from Eclipse Timing Diagram

Name Number T0 Ps Pa $\dot{\omega }$ ω0 ea U Kap
  Pri Sec (HJD2400000+) (day) (day) (deg/cycle) (deg)   (year) (day)
PP APS 5 3 48503.2737 (3) 4.279823 (41) 4.280082 (29) 0.0218 (24) 98.5 (8) 0.0624 (56) 194 (22) 0.0851 (77)
BW AQR 39 39 39680.4601 (1) 6.71969637 (23) 6.71971686 (18) 0.001098 (8) 100.60 (1) 0.17 (*) 6033 (44) 0.364988 (18)
LL AQR 13 5 48760.9070 (14) 20.1782936 (96) 20.1783048 (92) 0.000199 (48) 155.46 (8) 0.31654 (*) 100000 (24000) 2.057830 (29)
V871 AQL 14 13 38637.1658 (8) 2.9526665 (31) 2.9527721 (22) 0.01287 (27) 168.4 (1.9) 0.1247 (15) 226.1 (4.7) 0.1175 (15)
V1665 AQL 7 4 52810.7272 (5) 3.8817457 (49) 3.8819249 (36) 0.01662 (31) 124.4 (1) 0.2418 (*) 230.3 (4.3) 0.305147 (93)
AG ARI 6 14 54033.3259 (1) 1.9631279 (12) 1.96319198 (88) 0.01173 (14) 110.3 (1) 0.0907 (*) 164.9 (2.0) 0.057766 (20)
WW CAM 25 13 39403.5546 (2) 2.2743627 (86) 2.2744028 (61) 0.00634 (96) 119.9 (6.0) 0.0094 (*) 354 (54) 0.00680837 (36)
V534 CAM 6 4 51497.1695 (2) 3.014237 (14) 3.0145467 (99) 0.0370 (12) 18.9 (1.8) 0.07330 (86) 80.3 (2.6) 0.07038 (83)
SW CMA 17 21 26705.2803 (4) 10.0919732 (32) 10.0921624 (21) 0.006747 (87) 167.5 (1) 0.30519 (5) 1474 (19) 0.99142 (17)
TZ CMA 14 8 55140.7559 (35) 3.822868 (45) 3.822882 (44) 0.00133 (42) 289 (56) 0.062 (18) 2830 (890) 0.076 (21)
AR CMA 11 9 51869.9099 (2) 2.332225 (34) 2.332346 (24) 0.0186 (38) 110.7 (2.0) 0.0149 (15) 124 (25) 0.0110 (11)
CV CMA 8 6 28044.5594 (11) 3.6282856 (28) 3.6283987 (19) 0.01122 (21) 174.2 (1.4) 0.22570 (51) 318.9 (5.9) 0.26223 (60)
KL CMA 14 22 48170.3045 (1) 1.76221426 (31) 1.76233061 (21) 0.023767 (45) 59.1 (1) 0.20035 (19) 73.08 (14) 0.11394 (11)
LT CMA 17 10 48388.5412 (2) 1.75952345 (99) 1.75968043 (71) 0.03212 (14) 78.9 (4) 0.04539 (17) 53.90 (24) 0.02645 (10)
V388 CMA 3 3 53067.7537 (32) 2.982741 (36) 2.982814 (32) 0.0088 (19) 72 (12) 0.49 (14) 334 (74) 0.48 (14)
AV CMI 11 15 52500.6147 (4) 2.2777520 (64) 2.2778108 (44) 0.00929 (73) 193.3 (2.2) 0.1092 (11) 242 (19) 0.07973 (81)
EM CAR 9 10 45038.8131 (1) 3.414275 (15) 3.414759 (10) 0.0511 (11) 24.3 (1.5) 0.01411 (19) 65.9 (1.4) 0.01551 (21)
QX CAR 11 15 40701.2258 (1) 4.47797312 (93) 4.47814181 (63) 0.013561 (55) 117.10 (4) 0.26645 (39) 325.5 (1.3) 0.38413 (57)
V466 CAR 10 7 48036.7444 (3) 3.4558337 (18) 3.4560317 (12) 0.02062 (13) 194.8 (4) 0.19585 (50) 165.2 (1.1) 0.21906 (57)
V529 CAR 11 10 48157.3801 (12) 4.7445731 (61) 4.7448226 (42) 0.01893 (33) 31.2 (5) 0.133 (*) 247.1 (4.4) 0.204532 (65)
AR CAS 15 6 40063.9101 (3) 6.0663123 (15) 6.0664011 (10) 0.005271 (67) 35.1 (3) 0.21636 (74) 1134 (14) 0.4208 (15)
IT CAS 62 44 28762.5245 (3) 3.8966488 (10) 3.89666729 (72) 0.001710 (67) 328.9 (4) 0.085 (*) 2246 (88) 0.1055197 (13)
MU CAS 24 24 51877.1784 (11) 9.6529390 (67) 9.6531007 (46) 0.00603 (18) 345.4 (7) 0.19288 (58) 1578 (48) 0.5960 (18)
PV CAS 162 120 40227.3870 (1) 1.75046985 (66) 1.75056472 (46) 0.019509 (96) 177.4 (5) 0.03199 (8) 88.44 (44) 0.017888 (45)
V381 CAS 49 48 44546.2827 (2) 1.7459434 (15) 1.7463658 (11) 0.08707 (22) 269.7 (1.3) 0.02578 (10) 19.764 (49) 0.014333 (56)
V459 CAS 58 34 25321.5738 (8) 8.4582629 (79) 8.4583337 (56) 0.00302 (24) 230.0 (8) 0.0244 (*) 2760 (220) 0.0657012 (11)
V775 CAS 9 5 48766.4536 (10) 5.390159 (21) 5.390236 (14) 0.0051 (10) 353.9 (1.2) 0.24746 (7) 1040 (210) 0.42767 (12)
V785 CAS 23 28 48502.3735 (1) 2.70251432 (76) 2.70275432 (54) 0.031969 (72) 115.4 (1) 0.09111 (9) 83.32 (19) 0.078461 (78)
V799 CAS 7 9 48500.3927 (3) 7.70293311 (91) 7.70306184 (76) 0.006016 (23) 230.89 (2) 0.4345 (*) 1261.0 (4.8) 1.091990 (81)
V821 CAS 35 31 51767.3480 (1) 1.76973848 (41) 1.76980937 (29) 0.014421 (60) 146.9 (1) 0.13952 (12) 120.96 (50) 0.079603 (72)
V1018 CAS 10 3 51601.488 (11) 4.127759 (46) 4.127826 (31) 0.0058 (29) 125 (13) 0.227 (68) 700 (360) 0.300 (90)
V1137 CAS 7 6 54763.3492 (1) 4.158989 (89) 4.159442 (63) 0.0393 (55) 57.8 (3.8) 0.0166 (17) 104 (15) 0.0220 (22)
V1141 CAS 5 4 51542.5194 (2) 6.9092748 (41) 6.9122578 (29) 0.15536 (15) 129.30 (7) 0.14748 (19) 43.834 (43) 0.32532 (42)
KT CEN 23 18 41696.0724 (6) 4.1304376 (18) 4.1305591 (13) 0.01059 (11) 214.0 (4) 0.2068 (10) 384.2 (4.0) 0.2735 (14)
V636 CEN 15 10 34540.3604 (3) 4.28394652 (37) 4.28395795 (29) 0.000961 (20) 278.91 (8) 0.1348 (*) 4393 (91) 0.1842066 (20)
V1087 CEN 11 8 50563.5959 (3) 5.0496454 (18) 5.0502159 (15) 0.040667 (68) 275.24 (2) 0.365 (*) 122.40 (21) 0.597314 (60)
CW CEP 60 43 41669.5724 (1) 2.72913959 (68) 2.72957960 (48) 0.058033 (63) 201.8 (2) 0.02910 (6) 46.351 (50) 0.025507 (53)
EK CEP 77 16 39002.8143 (29) 4.427794 (25) 4.427802 (25) 0.00065 (11) 59.2 (8.2) 0.139 (33) 6700 (1100) 0.197 (47)
EY CEP 7 14 52339.3254 (2) 7.9714716 (10) 7.97148733 (91) 0.000712 (20) 109.75 (1) 0.4415 (*) 11030(310) 1.1482917 (42)
V397 CEP 23 23 48501.2685 (2) 2.0868237 (12) 2.08688277 (86) 0.01019 (15) 20.5 (8) 0.14342 (96) 201.7 (3.0) 0.09649 (65)
V698 CEP 4 4 50421.1608 (58) 6.618513 (68) 6.618668 (47) 0.0084 (27) 204.9 (9.6) 0.141 (11) 780 (250) 0.297 (24)
V734 CEP 8 6 51482.7078 (33) 3.76596 (12) 3.76599 (12) 0.0033 (12) 72 (17) 0.186 (95) 1110 (390) 0.22 (11)
V898 CEP 10 9 51366.3811 (3) 2.8747637 (42) 2.8748413 (28) 0.00971 (39) 166.3 (3) 0.27352 (18) 292 (12) 0.25381 (18)
V919 CEP 8 8 51295.7813 (3) 1.8519816 (28) 1.8521142 (19) 0.02576 (39) 181.0 (1.2) 0.09515 (45) 70.9 (1.1) 0.05616 (27)
V957 CEP 10 13 51504.7302 (2) 1.9887340 (48) 1.9888017 (33) 0.01225 (62) 315.4 (7) 0.1289 (15) 160. (8.) 0.08174 (94)
V961 CEP 6 6 51442.6550 (2) 7.03847 (17) 7.03868 (16) 0.0107 (24) 180.9 (6.4) 0.0288 (*) 650 (150) 0.0646001 (60)
TV CET 22 17 41275.9334 (2) 9.1032902 (49) 9.1032978 (35) 0.00030 (14) 244.9 (2) 0.0247 (*) 30000 (13000) 0.0715853 (19)
alpha CRB 9 6 23165.4584 (21) 17.3599095 (49) 17.3599499 (41) 0.000837 (56) 309.84 (8) 0.374 (*) 20400 (1400) 2.10357 (12)
VV CRV 15 9 56045.7141 (1) 3.1445164 (25) 3.1446797 (18) 0.01869 (19) 256.10 (7) 0.0852 (*) 165.8 (1.7) 0.0853855 (40)
Y CYG 111 90 46308.3107 (1) 2.99633138 (13) 2.99684513 (9) 0.061714 (11) 132.50 (2) 0.14595 (6) 47.854 (9) 0.139835 (60)
MY CYG 22 29 41559.5996 (1) 4.0051878 (34) 4.0052115 (24) 0.00213 (21) 110.7 (5) 0.01 (*) 1850 (190) 0.01275305 (55)
V380 CYG 13 13 41256.0394 (47) 12.425608 (31) 12.425942 (21) 0.00968 (66) 134.0 (2.1) 0.2029 (67) 1265 (87) 0.817 (27)
V453 CYG 22 14 39340.1154 (1) 3.8898190 (16) 3.8902876 (11) 0.04336 (10) 301.2 (3) 0.02288 (20) 88.42 (21) 0.02834 (25)
V478 CYG 35 23 44777.4851 (1) 2.8809008 (21) 2.8817297 (15) 0.10355 (18) 46.7 (5) 0.01499 (9) 27.422 (48) 0.014059 (85)
V490 CYG 20 18 51491.5924 (1) 1.1402372 (11) 1.14042844 (82) 0.06036 (25) 344.3 (8) 0.04418 (25) 18.618 (78) 0.016043 (91)
V541 CYG 16 17 44881.7603 (2) 15.33790145 (72) 15.33791835 (45) 0.000397 (13) 262.76 (1) 0.479 (*) 38100 (1300) 2.409127 (11)
V796 CYG 38 36 37997.0990 (5) 1.48086983 (77) 1.48105480 (53) 0.04496 (13) 281.7 (1.5) 0.07224 (21) 32.463 (96) 0.034077 (99)
V1136 CYG 44 39 35453.4840 (19) 3.4627576 (17) 3.4628132 (11) 0.00579 (14) 32.7 (1.2) 0.3198 (50) 580 (14) 0.3569 (57)
V1143 CYG 53 15 48410.0562 (1) 7.64074057 (28) 7.64075715 (11) 0.000781 (12) 48.76 (0) 0.538 (*) 9640 (150) 1.36244 (13)
V1147 CYG 33 24 34120.2429 (4) 15.2513209 (11) 15.25132728 (84) 0.000150 (17) 51.34 (2) 0.275 (*) 100000 (11000) 1.347092 (13)
V1326 CYG 13 16 28391.269 (43) 16.68178 (79) 16.68191 (55) 0.003 (12) 122 (96) 0.079 (21) 6000 (23000) 0.42 (11)
V2094 CYG 37 31 54969.469(11) 8.480341 (72) 8.480389 (67) 0.0021 (11) 319 (45) 0.27 (17) 4000 (2100) 0.72 (47)
V2544 CYG 20 12 55004.4892 (1) 2.0937660 (13) 2.09403539 (90) 0.04631 (16) 342.9 (2) 0.07978 (12) 44.56 (15) 0.053556 (81)
V2647 CYG 6 6 53670.7767 (3) 5.855308 (11) 5.8555732 (73) 0.01631 (49) 176.6 (2) 0.26630 (9) 354 (11) 0.50055 (17)
BY DEL 17 9 25830.3751 (31) 10.03420 (13) 10.034928 (94) 0.0261 (34) 101.7 (7.2) 0.00827 (10) 379 (49) 0.02641 (32)
BF DRA 50 33 47276.3401 (2) 11.21099183 (67) 11.21100657 (42) 0.000473 (17) 93.27 (1) 0.3865 (*) 23350 (840) 1.405494 (72)
V410 GEM 8 7 51548.8122 (19) 3.470335 (34) 3.470469 (23) 0.0139 (25) 68.8 (3.9) 0.185 (31) 246 (45) 0.205 (35)
DI HER 73 54 42234.892 (94) 10.550167 (22) 10.550189 (13) 0.00077 (61) 344 (11) 0.450 (20) 14000 (11000) 1.551 (71)
HS HER 88 55 47382.4226 (1) 1.6374342 (18) 1.6375329 (13) 0.02169 (28) 233.6 (8) 0.02029 (23) 74.39 (97) 0.01058 (12)
AI HYA 25 17 41726.0880 (3) 8.28967011 (92) 8.28971167 (70) 0.001805 (26) 245.91 (3) 0.23 (*) 4528 (65) 0.6106838 (19)
OZ HYA 9 7 51983.9427 (2) 2.0487659 (11) 2.04880419 (77) 0.00673 (13) 232.8 (3) 0.071 (*) 300.0 (5.9) 0.047102 (15)
CH IND 9 3 52854.935 (14) 5.95258 (14) 5.95260 (14) 0.00138 (83) 301 (81) 0.084 (39) 4300 (2600) 0.159 (75)
CO LAC 75 79 27534.0756 (2) 1.54220722 (29) 1.54235781 (21) 0.035149 (48) 165.9 (8) 0.02900 (10) 43.246 (59) 0.014285 (49)
CY LAC 10 7 54098.8707 (2) 8.3605382 (34) 8.3606619 (24) 0.00533 (10) 31.83 (3) 0.2565 (*) 1547 (30) 0.69256 (14)
ES LAC 31 20 34240.5644 (4) 4.4594000 (14) 4.45957249 (92) 0.013922 (79) 306.4 (3) 0.19200 (6) 315.7 (1.8) 0.275138 (90)
GX LAC 10 8 46009.3070 (1) 6.355241 (71) 6.355923 (50) 0.0387 (28) 153.0 (2.7) 0.00311 (11) 162 (12) 0.00630 (22)
MZ LAC 78 77 38264.5464 (25) 3.1587897 (12) 3.15883224 (63) 0.00485 (12) 57.7 (8) 0.5122 (88) 642 (15) 0.5338 (99)
OT LAC 7 4 56927.8591 (3) 5.1498634 (19) 5.1505782 (14) 0.049962 (95) 180.6 (3) 0.08545 (18) 101.61 (19) 0.14022 (30)
V339 LAC 15 10 34006.0536 (12) 3.408522 (14) 3.408989 (10) 0.0493 (11) 247.6 (6.7) 0.01640 (12) 68.1 (1.5) 0.01779 (13)
V364 LAC 46 41 44257.3666 (1) 7.35153706 (36) 7.35157681 (28) 0.001947 (11) 83.60 (1) 0.2873 (*) 3722 (21) 0.679021 (17)
V398 LAC 13 7 48501.1735 (3) 5.4060405 (37) 5.4064895 (25) 0.02989 (18) 183.0 (2) 0.20381 (13) 178.2 (1.1) 0.35745 (25)
V401 LAC 20 19 48501.8792 (2) 1.9500921 (14) 1.95017805 (95) 0.01586 (19) 38.5 (6) 0.1978 (19) 121.2 (1.4) 0.1249 (12)
GG LUP 25 19 46136.7444 (1) 1.84959990 (46) 1.84969065 (32) 0.017663 (63) 85.95 (8) 0.15654 (19) 103.21 (37) 0.09258 (11)
TZ MEN 6 5 42403.7495 (3) 8.568991 (54) 8.569228 (37) 0.0099 (16) 294.9 (2) 0.035 (*) 850 (140) 0.0955053 (38)
V498 MON 26 28 33221.7470 (6) 2.4727700 (35) 2.4730321 (25) 0.03815 (36) 156.9 (2.9) 0.04342 (28) 63.88 (61) 0.03473 (22)
V578 MON 26 11 54469.0793 (1) 2.40848583 (41) 2.40898092 (28) 0.073988 (44) 127.8 (1) 0.07808 (21) 32.085 (19) 0.06305 (17)
V684 MON 29 31 54153.5377 (1) 1.8514207 (16) 1.8515194 (11) 0.01918 (21) 171.9 (6) 0.02603 (10) 95.2 (1.1) 0.015340 (59)
V730 MON 11 12 48502.7455 (2) 1.57231877 (70) 1.57243100 (51) 0.02569 (11) 241.6 (3) 0.08244 (21) 60.31 (26) 0.04335 (11)
GM NOR 17 13 41696.9087 (4) 1.8845768 (24) 1.8847167 (17) 0.02673 (33) 164.0 (2.2) 0.04415 (27) 69.50 (85) 0.02666 (16)
GN NOR 13 15 25720.3299 (12) 5.7034540 (61) 5.7036379 (42) 0.01160 (28) 135.7 (3) 0.19386 (90) 484 (12) 0.3536 (17)
V451 OPH 33 27 44834.3611 (1) 2.1965971 (41) 2.1966759 (29) 0.01292 (47) 246.5 (9) 0.01169 (29) 167.6 (6.1) 0.00819 (20)
V2626 OPH 5 4 52787.4983 (2) 10.8743102 (76) 10.8745973 (46) 0.00951 (20) 244.43 (3) 0.191 (*) 1127 (24) 0.665067 (68)
EW ORI 45 26 27543.4613 (4) 6.9368445 (12) 6.93685316 (79) 0.000451 (44) 307.5 (2) 0.0758 (*) 15200 (1500) 0.16748264 (72)
FT ORI 102 32 41349.0192 (5) 3.15039304 (34) 3.15044416 (20) 0.005841 (31) 21.5 (2) 0.41055 (53) 531.6 (2.8) 0.42048 (57)
GG ORI 47 44 35373.5094 (51) 6.631492 (45) 6.631509 (45) 0.00094 (26) 137 (71) 0.161 (18) 6900 (1900) 0.342 (39)
V642 ORI 5 11 27126.003 (13) 9.185527 (92) 9.185593 (89) 0.00258 (73) 103 (21) 0.40 (14) 3510 (990) 1.20 (43)
δ ORI 10 6 43872.5941 (3) 5.7324322 (81) 5.7326979 (57) 0.01669 (36) 105.3 (3) 0.1120 (18) 338.5 (7.4) 0.2110 (33)
BK PEG 12 15 41587.7276 (3) 5.489908 (18) 5.490122 (13) 0.01403 (85) 92.3 (2.1) 0.0053 (*) 386 (23) 0.00926797 (58)
AG PER 54 51 24946.5140 (1) 2.02872978 (11) 2.02887602 (8) 0.025949 (14) 64.1 (2) 0.07091 (10) 77.057 (42) 0.046343 (67)
IM PER 61 41 33541.3792 (6) 2.2542265 (72) 2.2543156 (51) 0.01424 (82) 317.6 (7.6) 0.0503 (28) 156.1 (9.0) 0.0363 (20)
IQ PER 73 26 44290.3640 (1) 1.74356232 (48) 1.74364137 (34) 0.016321 (71) 57.3 (2) 0.06644 (16) 105.30 (46) 0.036905 (89)
V871 PER 16 16 51421.5601 (1) 3.02388343 (97) 3.02422984 (67) 0.041236 (83) 144.79 (9) 0.23375 (15) 72.28 (15) 0.22647 (15)
SY PHE 14 12 54163.2641 (1) 5.270884 (56) 5.272218 (39) 0.0911 (27) 208.6 (2.2) 0.00639 (13) 57.1 (1.7) 0.01074 (22)
KX PUP 14 5 41686.8054 (14) 2.1467975 (11) 2.14685561 (77) 0.00974 (13) 302.5 (8) 0.17309 (38) 217.3 (2.9) 0.11960 (27)
LN PUP 9 8 27803.3012 (25) 3.9511289 (32) 3.9513742 (22) 0.02234 (20) 60.9 (1.5) 0.12183 (72) 174.3 (1.6) 0.15350 (91)
NO PUP 19 10 41361.8145 (1) 1.25688036 (22) 1.25699509 (15) 0.032859 (46) 3.4 (4) 0.12398 (24) 37.700 (53) 0.05086 (10)
V358 PUP 14 12 52503.6027 (3) 6.79391 (97) 6.79400 (97) 0.0048 (21) 114 (55) 0.0034 (20) 1390(620) 0.0074 (44)
V366 PUP 10 7 47860.4656 (6) 2.48398097 (74) 2.48405727 (42) 0.011058 (88) 61.9 (2) 0.3994 (24) 221.4 (1.8) 0.3227 (20)
V399 PUP 15 13 47889.8276 (2) 3.91012557 (84) 3.91055796 (59) 0.039804 (55) 56.94 (7) 0.148 (*) 96.84 (13) 0.190317 (85)
V596 PUP 9 7 44620.6173 (0) 4.5961749 (16) 4.5961985 (12) 0.001845 (86) 108.65 (2) 0.0956 (*) 2460 (114) 0.1400299 (40)
TZ PYX 9 11 52226.7765 (1) 2.318552 (12) 2.3191955 (85) 0.0998 (13) 297.6 (1.1) 0.01072 (19) 22.89 (30) 0.00791 (14)
V523 SGR 29 31 15971.5678 (6) 2.32381294 (49) 2.32388440 (34) 0.011071 (55) 274.3 (9) 0.16479 (66) 206.9 (1.0) 0.12319 (50)
V526 SGR 56 60 47739.6528 (1) 1.91941209 (15) 1.91947734 (10) 0.012238 (21) 254.90 (5) 0.21813 (26) 154.59 (27) 0.13403 (16)
V1647 SGR 13 15 41829.2399 (7) 3.28280023 (40) 3.28284030 (24) 0.004394 (35) 211.3 (3) 0.4331 (10) 736.4 (5.9) 0.4634 (12)
V2283 SGR 44 31 38948.4924 (8) 3.47142163 (69) 3.47148345 (42) 0.006411 (57) 2.5 (2) 0.48764 (50) 533.7 (4.7) 0.55591 (61)
V385 SCO 6 7 53268.2494 (2) 4.690243 (25) 4.690308 (18) 0.0049 (13) 147.8 (7) 0.018 (*) 930 (250) 0.0269197 (27)
V629 SCO 7 7 53626.9294 (1) 3.2491189 (83) 3.2502574 (57) 0.12610 (67) 320.7 (3) 0.06163 (19) 25.41 (14) 0.06455 (20)
V760 SCO 16 13 43250.8363 (1) 1.7309336 (12) 1.73115416 (82) 0.04586 (17) 311.2 (6) 0.02641 (25) 37.21 (14) 0.01469 (14)
V881 SCO 10 11 52128.4205 (3) 2.4915579 (82) 2.4916499 (57) 0.01329 (85) 186.0 (1.9) 0.11007 (59) 185 (12) 0.08802 (47)
V883 SCO 22 16 53685.1893 (1) 4.3411773 (57) 4.3415019 (41) 0.02692 (34) 338.8 (3) 0.07841 (13) 158. (2.) 0.10843 (18)
V1270 SCO 5 3 52441.5905 (47) 4.24316 (12) 4.24325 (12) 0.00713 (69) 102 (21) 0.363 (64) 586 (57) 0.498 (91)
CR SCT 12 11 28719.4993 (16) 4.1923458 (19) 4.1923529 (16) 0.000605 (78) 70.6 (8) 0.089 (*) 6830 (880) 0.11887583 (9)
V335 SER 19 11 50304.4201 (2) 3.4498757 (11) 3.44989807 (84) 0.002333 (78) 61.4 (1) 0.14 (*) 1457 (49) 0.154275 (13)
V413 SER 22 18 49038.8373 (2) 2.25975738 (90) 2.26001340 (63) 0.04078 (10) 81.9 (3) 0.06416 (11) 54.62 (14) 0.046909 (82)
V1154 TAU 10 7 53064.1259 (1) 1.7679033 (18) 1.7680738 (13) 0.03472 (26) 208.4 (6) 0.02609 (31) 50.18 (38) 0.01468 (17)
MN TRA 8 9 48006.3050 (3) 2.3798199 (50) 2.3799037 (35) 0.01268 (54) 203.3 (2.1) 0.0891 (16) 185.0 (7.9) 0.0676 (12)
ET VEL 21 10 29778.2106 (15) 3.0808828 (20) 3.0810589 (15) 0.02058 (16) 260.8 (1.2) 0.06984 (51) 147.6 (1.1) 0.06853 (50)
GT VEL 12 6 41689.3159 (6) 4.6700757 (69) 4.6701727 (49) 0.00748 (38) 18.4 (2.1) 0.1557 (24) 615 (31) 0.2321 (36)
PT VEL 8 6 48293.4700 (3) 1.8020239 (45) 1.8020689 (31) 0.00901 (64) 260.9 (7) 0.1390 (85) 197 (14) 0.0799 (49)
BP VUL 51 33 46003.2323 (1) 1.9403457 (13) 1.94038100 (91) 0.00656(17) 145.4 (8) 0.03192 (12) 291.7 (7.6) 0.019750 (74)
EQ VUL 41 50 35343.8116 (33) 9.2971468 (60) 9.2973245 (39) 0.00688 (18) 198.9 (8) 0.3216 (16) 1331 (34) 0.9639 (49)
FQ VUL 20 6 34238.4546 (18) 6.2626912 (46) 6.2628263 (25) 0.00777 (22) 268.43 (9) 0.527 (10) 795 (23) 1.092 (23)
V495 VUL 15 19 54651.5002 (1) 1.6351323 (23) 1.6352195 (12) 0.01918 (26) 2.0 (3) 0.07679 (18) 84.0 (0.7) 0.04042 (10)
2MASS J04370204+4205520 12 8 52500.9459 (2) 1.4547187 (56) 1.4548116 (39) 0.02299 (99) 301.7 (1.2) 0.03010 (62) 62.4 (2.7) 0.01394 (29)
2MASS J07251501-1135496 6 6 53368.881 (16) 4.509982 (73) 4.510048 (66) 0.0053 (25) 222 (42) 0.46 (14) 840 (390) 0.68 (21)
2MASS J11292643-6201579 3 3 52500.6313 (3) 3.224771 (16) 3.225391 (11) 0.0692 (12) 127.8 (2) 0.13804 (47) 45.95 (82) 0.14203 (49)
2MASS J16111795+3307131 3 5 52503.5747 (47) 8.2837 (12) 8.2844 (12) 0.0325 (58) 297 (32) 0.060 (17) 251 (45) 0.158 (45)
2MASS J19033272+3941003 44 44 52500.3152 (2) 2.1891046 (21) 2.1892176 (14) 0.01858 (25) 328.2 (2) 0.23843 (26) 116.1 (1.6) 0.16727 (18)
2MASS J20020438+4734147 5 4 52501.9431 (32) 5.59890 (25) 5.60151 (15) 0.168 (13) 274.3 (7) 0.3475 (98) 32.9 (2.5) 0.629 (18)

Note.

aEccentricity with "*" is fixed during the calculation. See the text for details.

Download table as:  ASCIITypeset images: 1 2 3

Table 6 contains the results of computations for 31 EEBs exhibiting a combined form of both AM and LITE. The heading of Table 6 has two rows. The upper part represents the parameters of the AM of EEBs (the same as those in Table 5) and the lower part represents the LITE parameters of the eclipsing pair with respect to the mass center of the triple system. Columns 4 ∼ 8 are self-explanatory. The last column denotes the semi-amplitude (K12, in days) of the LITE orbit.

Table 6.  Parameters of Apsidal Motion and LITE Obtained from the Eclipse Timing Diagram

Name Number T0(HJD) Ps(day) Pa(day) $\dot{\omega }$(deg/cycle) ω0 (deg) ea U (year) Kap (day)
  Pri Sec a12 sin i3(au) ω12 (deg) e3 P3 (year) Tperi (HJD) K12 (day)    
V889 Aql 39 36 2438241.7646 (23) 11.1207549 (19) 11.1207648 (19) 0.000323 (13) 125.48 (2) 0.3745 (*) 33900 (1400) 1.349198 (65)
      9.19 (35) 91.3 (4.2) 0.486 (38) 68.10 (85) 2447740 (210) 0.0531 (23)    
V539 Ara 19 17 2439314.3645 (3) 3.1690847 (13) 3.16926083 (88) 0.02001 (10) 84.2 (1) 0.05376 (17) 156.10 (79) 0.05445 (17)
      3.64 (11) 74.2 (4.1) 0.456 (28) 53 (1) 2444610 (180) 0.0209 (47)    
AL Ari 13 5 2451112.83 (15) 3.747462 (53) 3.747468 (53) 0.00059 (10) 72.2 (3) 0.06 (*) 6200 (1100) 0.0716010 (20)
      1.71 (20) 124 (52) 0.86 (26) 92 (18) 2452170 (120) 0.0086 (38)    
CG Aur 91 50 2427148.8680 (23) 1.8048587 (59) 1.8049108 (42) 0.01038 (85) 169 (10) 0.0527 (17) 171 (14) 0.03028 (90)
      0.706 (19) 184.7 (9.6) 0.257 (44) 1.896 (4) 2449999 (24) 0.0039 (3)    
BW Boo 36 7 2440362.752 (13) 3.3328179 (96) 3.3328298 (93) 0.00129 (26) 190 (29) 0.14 (2) 2540 (511) 0.151 (18)
      1.127 (62) 189 (8) 0.469 (57) 7.812 (52) 2444410 (150) 0.0058 (20)    
AS Cam 83 67 2440204.4043 (3) 3.4309673 (23) 3.4309993 (16) 0.00336 (17) 205.3 (1.8) 0.1079 (16) 1008 (51) 0.1180 (18)
      0.427 (24) 78.1 (6.1) 0.585 (70) 2.216 (1) 2409154 (26) 0.0024 (10)    
GL Car 106 90 2424264.4510 (10) 2.42223150 (20) 2.42287242 (15) 0.095230 (20) 85.8 (2) 0.14459 (16) 25.077 (5) 0.11194 (12)
      1.016 (63) 161 (40) 0.019 (14) 123 (14) 2491110 (460) 0.0059 (5)    
V493 Car 14 15 2447945.828 (9) 3.229516 (47) 3.229658 (47) 0.01579 (21) 16.1 (6) 0.21166 (76) 201.5 (2.7) 0.22207 (81)
      15.5 (1.7) 73 (46) 0.69 (23) 34.8 (7.7) 2447680 (110) 0.088 (14)    
OX Cas 36 35 2446733.7639 (83) 2.489349 (14) 2.489804 (14) 0.06580 (26) 203.9 (9) 0.04222 (12) 37.29 (15) 0.033650 (96)
      1.48 (64) 87 (16) 0.48 (18) 63 (17) 2440400 (180) 0.0086 (37)    
V346 Cen 33 34 2421966.9330 (44) 6.3219876 (34) 6.3223450 (34) 0.020354 (40) 273.24 (9) 0.28663 (15) 306.16 (60) 0.58593 (33)
      36.34 (97) 90.9 (7.7) 0.171 (40) 150.3 (6.7) 2438910 (940) 0.2099 (57)    
V477 Cyg 122 48 2450988.259 (14) 2.34697860 (52) 2.34701539 (51) 0.005643 (17) 168.3 (1) 0.32238 (11) 409.9 (1.2) 0.244615 (92)
      3.48 (16) 317 (31) 0.41 (14) 161 (44) 2415230 (320) 0.0192 (15)    
V974 Cyg 46 47 2435019.3607 (4) 3.2044133 (59) 3.2044405 (42) 0.00306 (48) 202 (6) 0.0579 (25) 1030 (160) 0.0591 (25)
      1.163 (45) 275 (4) 0.528 (47) 23.85 (15) 2450356 (65) 0.0067 (7)    
V994A Her 41 26 2448501.1424 (3) 2.0832650 (67) 2.0833678 (47) 0.01775 (82) 308.6 (2.9) 0.02752 (11) 115.7 (5.4) 0.018357 (73)
      2.025 (26) 229.4 (5.4) 0.854 (45) 2.962 (3) 2452787.3 (9.3) 0.0097 (5)    
V994B Her 38 29 2455375.4586 (1) 1.4200396 (15) 1.4200838 (11) 0.01120 (27) 309.1 (9) 0.1368 (23) 124. (3.) 0.0621 (11)
      2.432 (31) 65.5 (1.4) 0.494 (22) 2.875 (2) 2452882.8 (3.2) 0.0138 (19)    
RW Lac 26 24 2418657.4008 (23) 10.36921 (68) 10.36924 (68) 0.00114 (24) 235 (51) 0.0215 (33) 9000 (1900) 0.071 (11)
      3.41 (11) 334.5 (1.5) 0.762 (17) 28.56 (52) 2401490 (950) 0.0141 (6)    
V345 Lac 42 41 2431343.539 (25) 7.491915 (16) 7.491934 (16) 0.00089 (13) 245 (32) 0.54 (17) 8300 (1200) 1.35 (46)
      5.7 (1.1) 5.3 (5.3) 0.53 (14) 56.0 (1.1) 2571200 (1200) 0.028 (8)    
V402 Lac 25 15 2448501.3221 (33) 3.7820021 (27) 3.7821371 (22) 0.01285 (16) 16.6 (5) 0.32415 (84) 290.2 (3.5) 0.4027 (11)
      4.45 (19) 211 (13) 0.216 (31) 28.4 (1.7) 2439530 (480) 0.0252 (73)    
RU Mon 98 81 2438409.5755 (3) 3.58464746 (33) 3.58474834 (21) 0.010131 (26) 71.08 (6) 0.39758 (71) 348.78 (90) 0.46271 (86)
      5.160 (56) 288.3 (9) 0.540 (10) 61.92 (12) 2443100 (47) 0.0294 (25)    
AO Mon 45 35 2440588.3305 (4) 1.8847625 (32) 1.8850334 (23) 0.05172 (44) 260.4 (3.0) 0.01657 (21) 35.92 (30) 0.00996 (13)
      0.927 (40) 310 (39) 0.087 (39) 3.568 (5) 2440690 (140) 0.0053 (8)    
V521 Mon 20 16 2433008.4033 (10) 2.97067068 (75) 2.97079373 (53) 0.014911 (63) 270.2 (5) 0.1899 (2) 196.37 (83) 0.18192 (20)
      1.763 (89) 239.8 (6.5) 0.420 (37) 8.433 (35) 2437013 (89) 0.0100 (52)    
GV Nor 20 10 2425560.1402 (30) 2.971864 (18) 2.972000 (13) 0.0165 (16) 0 (13) 0.0968 (13) 178 (17) 0.0920 (12)
      1.01 (32) 124 (15) 0.69 (21) 8.347 (84) 2428490 (240) 0.005 (21)    
U Oph 63 32 2445892.4499 (1) 1.6773457 (41) 1.6777097 (29) 0.07810 (62) 230.9 (2.9) 0.00347 (13) 21.17 (17) 0.001857 (69)
      1.748 (33) 134.3 (6.7) 0.147 (17) 37.40 (12) 2449820 (290) 0.0100 (8)    
V456 Oph 56 31 2453923.9350 (1) 1.01600123 (86) 1.01612327 (61) 0.04324 (22) 359.9 (8) 0.01889 (27) 23.16 (12) 0.006113 (87)
      0.243 (64) 244 (21) 0.49 (15) 5.930 (33) 2452080 (150) 0.0014 (28)    
V577 Oph 17 13 2447406.372 (29) 6.0790922 (51) 6.0791119 (49) 0.001172 (70) 51.67 (4) 0.2 (*) 5110 (310) 0.388955 (18)
      7.57 (76) 331 (15) 0.48 (14) 85.7 (7.3) 2437950 (780) 0.0397 948)    
V2783 Ori 12 9 2452946.8915 (65) 4.216169 (54) 4.216299 (51) 0.0111 (15) 49 (13) 0.166 (43) 375 (52) 0.223 (58)
      1.853 (96) 56.7 (4.2) 0.541 (68) 9.09 (14) 2454032 (23) 0.0102 (63)    
ζ Phe 29 20 2441643.7084 (55) 1.6697697 (29) 1.6698738 (28) 0.02246 (18) 43.5 (9) 0.01310 (25) 73.31 (59) 0.00697 (13)
      2.56 (19) 295 (22) 0.56 (15) 162 (12) 2445010 (730) 0.0144 (13)    
PV Pup 6 9 2443119.7156 (5) 1.6607268 (43) 1.6607581 (31) 0.00678 (66) 147.4 (2.6) 0.0519 (13) 241 (24) 0.02767 (68)
      0.96 (11) 243 (15) 0.038 (14) 0.637 (1) 2442173 (99) 0.0055 (8)    
YY Sgr 50 40 2419467.0395 (8) 2.62847397 (35) 2.62853757 (25) 0.008710 (34) 119.8 (4) 0.15728 (30) 297.4 (1.2) 0.13190 (25)
      1.544 (98) 135.3 (4.6) 0.531 (63) 18.509 (78) 2418760 (150) 0.0083 (6)    
AO Vel 50 44 2445043.6715 (1) 1.58461532 (10) 1.58473986 (7) 0.028292 (16) 96.69 (7) 0.07429 (9) 55.211 (31) 0.037509 (46)
      11.357 (9) 10.3 (4) 0.2925 (16) 40.886 929) 2445770 (10) 0.0628 (4)    
DR Vul 96 86 2448989.1040 (1) 2.25087313 (18) 2.25125756 (14) 0.061475 (19) 146.51 (5) 0.09416 (8) 36.095 (11) 0.067572 (58)
      11.660 (34) 99.5 (2) 0.6718 (23) 65.465 (83) 2430355 (32) 0.0669 (11)    
2MASS J04233735+2546360 8 8 2453735.288 (16) 3.21749 (11) 3.21769 (10) 0.0226 (52) 45 (17) 0.090 (27) 140 (32) 0.103 (28)
      4.79 (34) 269 (87) 0.89 (17) 1.665 (53) 2455750 (51) 0.0277 (20)    
 

Note.

aEccentricity with "*" is fixed during the calculation. See the text for details.

Download table as:  ASCIITypeset images: 1 2

Figures 1 and 2 show the ETDs of sample EEBs corresponding to the A and A+III systems, respectively. In the figures, assorted symbols were used according to the eclipse type and observational methods. Small plus signs (+), filled circles (•), and filled squares (■) were used to represent the photographic plate,8 visual or photographic, and the photoelectric or CCD times of minimum lights for the primary eclipse, respectively; and small cross signs (×), open circles (◦), and open squares (□) for the secondary eclipse. In the upper panel of each of the ETDs in Figure 1, the theoretical AM curves for the primary and secondary eclipses were drawn with the solid curves. In the lower panel, residuals from the curves were plotted. In Figure 2 for the A+III systems, each star has four ETDs as displayed from left to right. The ETD in the first panel shows both AM and LITE, while the second panel shows only AM. The third panel presents only the LITE effect, and the last panel shows the residuals from the AM and LITE ephemerides. The full version (16 images) of the ETDs of the A and A+III systems are presented online.

Figure 1.

Figure 1. Eclipse timing diagrams (ETDs) of 16 systems showing only AM. According to eclipse type and observational methods, assorted symbols were used: small plus signs (+), filled circles (•), and filled squares (■) were used to represent the photographic plate, visual or photographic, and photoelectric or CCD times of minimum lights for primary eclipse, respectively. On the other hand, small cross signs (×), open circles (◦), and open squares (□) were used for secondary eclipse. Each star has two ETDs from top to bottom. In the upper panel the theoretical AM curves for primary and secondary eclipses were drawn as the solid curves. In the lower panel we plot residuals from the ephemeris curves. All the other systems are shown in the extended figure.

(An extended version of this figure is available.)

Standard image High-resolution image
    Figure 2.

    Figure 2. Eclipse timing diagrams (ETDs) of 5 systems showing both AM and LITE. The symbols used are the same as those in Figure 1. Each star has four ETDs from left to right. The first panel contains the ETD showing both AM and LITE. The second panel contains the ETD showing only AM. The third panel shows only LITE and the last panel shows the residuals from the AM and LITE ephemeris. All the other systems are shown in the extended figure.

    (An extended version of this figure is available.)

    Standard image High-resolution image

      4. Statistics and Discussion

      In recent years, Michalska & Pigulski (2005), Michalska (2007), Zasche & Wolf (2013), Hong et al. (2014), and Zasche et al. (2015) presented the AM parameters of the 14, 11, 5, 3, and 13 AM systems in the LMC, respectively. On the other hand, Zasche et al. (2014) and Hong et al. (2015, 2016) gave the AM parameters of 18, 27, and 90 AM systems in the SMC, respectively. Their studies were based primarily on the photometric products of the EROS, MACHO, and OGLE surveys. On the basis of the abovementioned results and including our own, derived in this work, AM parameters are available for 170, 46, and 135 AM systems in our galaxy, the LMC, and the SMC, respectively. In this section, we investigate the statistics, distributions, and relations among the AM parameters of the three different groups defined in this paper.

      A summary of the statistics is shown in Table 7, which contains the minimum, maximum, mean, and median values for anomalistic period (Pa), eccentricity (e), AM period (U), and semi-amplitude of a theoretical AM curve (Kap). The stars with the minimum or maximum values of the parameters are identified in the row following the values. As listed in Table 5, the range between minimum and maximum values for each of the parameters in our galaxy is significantly wider than those in the LMC and the SMC, indicating that an observational selection effect exists in the SMC and the LMC. The observational selection effect is also seen in the histogram of the AM periods in Figure 3, as already noticed by Hong et al. (2016). The entire range of the distribution is divided into five intervals: log U < 1, 1 ≤ log U < 2, 2 ≤ log U < 3, 3 ≤ log U < 4, and log U ≥ 4.

      Figure 3.

      Figure 3. Distribution of AM periods in our galaxy, the LMC, and the SMC. The LMC and the SMC are differentiated as indicated in the legend.

      Standard image High-resolution image

      Table 7.  Statistics of Some Apsidal Parameters of Apsidal Motion Systems in Our Galaxy, the LMC, and the SMC

        Pa e U Kap
        (day)   (year) (day)
      Our galaxy
      Minimum 1.0161 0.0031 18.6 0.0019
      Stara (1) (2) (3) (4)
      Maximum 20.1783 0.5421 >100,000 2.4091
      Stara (5) (6) (5), (7) (8)
      Mean 4.5294 0.1582 3171.1 0.2876
      Median 3.4405 0.1244 235.8 0.1182
      LMC
      Minimum 1.4423 0.011 19.9 0.0059
      Stara (9) (10), (11) (9) (11)
      Maximum 6.5362 0.3990 1800 0.8467
      Stara (12) (12) (12) (12)
      Mean 3.2633 0.1329 157.7 0.1691
      Median 2.9898 0.105 85.8 0.0861
      SMC
      Minimum 1.0889 0.021 7.1 0.0101
      Stara (13) (14) (15) (13)
      Maximum 6.8339 0.502 897.0 0.6939
      Stara (16) (17) (18) (19)
      Mean 2.7424 0.171 112.8 0.1638
      Median 2.4378 0.153 69.0 0.1168

      Note.

      a(1) V456 Oph; (2) GX Lac; (3) V490 Cyg; (4) U Oph; (5) LL Aqr; (6) V345 Lac; (7) V1147 Cyg; (8) V541 Cyg; (9) OGLE LMC-ECL-12908; (10) OGLE LMC-ECL-10279; (11) OGLE LMC-ECL-7902; (12) OGLE LMC-ECL-15856; (13) OGLE SMC-ECL-6029; (14) OGLE SMC-ECL-4927; (15) OGLE SMC-ECL-2194; (16) OGLE SMC-ECL-2290; (17) OGLE SMC-ECL-3200; (18) OGLE SMC-ECL-4718; (19) OGLE SMC-ECL-4711.

      Download table as:  ASCIITypeset image

      Figure 4 shows a diagram of log P versus log U, where filled circles and upright and inverted triangles represent the AM systems in our galaxy, the LMC, and the SMC, respectively. The same symbols have the same meaning in the subsequent figures. For a global comparison between the observations and the AM theory, assuming that the components in an EB system have the same mass (M1 = M2), theoretical AM periods (U) as a function of orbital period (P) were calculated for two sets of masses (M1 = 1 M and 20 M), varying the orbital eccentricity as 0.001, 0.3, and 0.5. In the calculation, we used the relationship $U=360^\circ P/\dot{\omega }$, where $\dot{\omega }(={\dot{\omega }}_{{\rm{N}}}+{\dot{\omega }}_{{\rm{R}}})$ is the sum of the Newtonian term (${\dot{\omega }}_{{\rm{N}}}$) and the general relativistic term (${\dot{\omega }}_{{\rm{R}}}$). The complete forms of ${\dot{\omega }}_{{\rm{N}}}$ and ${\dot{\omega }}_{{\rm{R}}}$ were taken from Giménez (1985; e.g., his Equations (3), (11), (13), and (14)). In Figure 4, the upper three (solid, dashed, and dotted) lines designated as (a, b, c) correspond to the theoretical lines with different eccentricities (0.001, 0.3, 0.5), respectively, for M1 = M2 = 1 M. The lower three lines (d, e, f) are for the higher-mass value of M1 = M2 = 20 M. As can be seen in Figure 4, it is interesting to see that almost all, except for four, data points reside between the lines (a) and (f). For the LMC binaries, Mazeh (2008) discussed the possibility that a linear dependence of the AM period on the binary orbital period exists for the binaries with P ≤ 3d, while U ∼ P11/3 for the binaries with P > 3d. Following the suggestion of Mazeh (2008), Hong et al. (2016) supposed that the distribution of log P versus log U in the SMC is slightly different from that in our galaxy, as a result of their different ages and metallicities. However, a careful examination of Figure 4 and the other subsequent distributions shows that the apparent difference between the EBs of the SMC, plus the LMC and those of our galaxy, may also be due to an observational selection effect, rather than due to a real difference in their physical properties. Nevertheless, the EBs in the SMC and the LMC provide rich data between 1fd5 < P ≤ 6fd5 and 15y < U ≤ 350y in the log P versus log U distribution.

      Figure 4.

      Figure 4. Diagram of log P vs. log U. The filled circles and upright and inverted triangles represent the AM systems in our galaxy, the LMC, and the SMC, respectively. The upper three (solid, dashed, and dotted) lines designated as (a, b, c) were the theoretical lines with different eccentricities (0.001, 0.3, 0.5), respectively, for M1 = M2 = 1 M. The lower three lines (d, e, f) are for M1 = M2 = 20 M. See the text for more details.

      Standard image High-resolution image

      The distribution of eccentricities relative to the orbital period is shown in Figure 5, where the symbols are the same as those in Figure 4, and the upper and lower curves given by Mazeh (2008) are drawn as solid and dashed curves, respectively. The two curves have the same parametric form as $f=E-A\,\times \exp (-{(B\times P)}^{C})$. For the upper curve, E = 0.98, A = 3.25, B = 6.3, and C = 0.23; for the lower curve, A = 3.5 and B = 3. Mazeh derived these curves from the 2,751 spectroscopic binary (SB) orbits in the SB9 catalog (Pourbaix et al. 2005). Similar to the SBs, all the EBs, except one, lie below the upper curve, and there is a relatively sparse region between the upper and the lower curves, as also discussed with the SBs by Mazeh. The exceptional binary star is the OGLEIII-SMC-ECL-3200 (see Hong et al. 2016 for the physical parameters). In addition, we note that there are no AM EBs with an eccentricity larger than e = 0.55, whereas the eccentricity distribution of the SB systems (see Figure 1 of Mazeh 2008), on the other hand, shows that many systems have eccentricities higher than e = 0.55. Therefore, the absence of the high eccentric AM systems must be due to an observational selection effect rather than a real evolutionary effect such as a fast damping of the eccentricity induced by the strong tidal interaction between the components with high eccentricity (Zahn 2008). Along these lines, the presence of AM EBs with eccentricity larger than 0.55 at the orbital periods longer than about 3fd4 is very valuable.

      Figure 5.

      Figure 5. Diagram of orbital period vs. eccentricity. The symbols are the same as those in Figure 4. Two curves derived from the SB9 spectroscopic catalog by Mazeh (2008) are overplotted as solid (upper) and dashed (lower) curves. They both are of the form $f=E-A\times \exp -{(P\times B)}^{C}$. For the upper curve, E = 0.98, A = 3.25, B = 6.3 and C = 0.23. Almost all binaries are below the upper curve. For the lower curve, A = 3.5 and B = 3.

      Standard image High-resolution image

      Next, we investigated the distribution of e cos ω versus e sin ω. The distribution provides valuable information on the size and the direction of an eccentricity vector of an eccentric binary star (well-known as a Laplace−Runge−Lenz vector; refer to Goldstein 1980 and Eggleton 2006 for details). For this purpose, we calculated the longitude of periastron (ω) at the epoch of J2000.0 for all EBs using Equation (2). Figure 6 shows the distribution. The symbols are the same as those in Figure 4. Three eccentricity circles with e = 0.05, 0.3, and 0.6 were overplotted as the solid, dashed, and dotted circles, respectively. In addition, as a supplement to Figure 6, two histograms of longitudes of periastron and eccentricities are presented in Figure 7. Figure 7(a) shows a histogram of longitudes of periastron belonging to each of the four quadrants. On the other hand, Figure 7(b) shows a histogram of eccentricities belonging to each of three eccentricity circles. Careful investigation of the three figures shows that (1) the eccentricity vectors of the AM EBs in our galaxy and the LMC have no preferred directions, while about half the EBs in the SMC are populated in the first quadrant, and (2) about 80% or more of the EBs in all stellar groups are within the eccentricity circle of 0.3.

      Figure 6.

      Figure 6. Diagram of e cos ω vs. e sin ω. The symbols are the same as those in Figure 4. Three solid, dashed, and dotted circles represent the eccentricity circles with e = 0.05, 0.3, and 0.6, respectively. The longitudes of periastron (ω) of all EBs are the values at the epoch of J2000.0.

      Standard image High-resolution image
      Figure 7.

      Figure 7. (a) Distribution of longitude of periastron (ω) in each quadrant. (b) Distribution of eccentricities belonging to each of three eccentricity circles. The LMC and the SMC are differentiated using the same pattern used in Figure 3.

      Standard image High-resolution image

      Finally, we plotted a distribution of Kap (a semi-amplitude of an AM curve) as a function of the orbital period in Figure 8. From the figure, we found that Kap may have a maximum limit for a given orbital period. Using the maximum values of the Kap data between P = 2fd5 and P = 7fd7, we derived a linear equation describing the maximized limit value that Kap at a given period can have, as follows:

      Equation (4)

      Equation (4) was drawn as the dotted line in Figure 8 where all data are below the line. If the existence of the maximum limit of Kap is possibly real, it is certain to have a complicated relationship with the eccentricity, inclination, longitude of periastron, and orbital period (see Equations (15) ∼ (21) in the paper of Giménez & Bastero (1995)).

      Figure 8.

      Figure 8. Distribution of Kap as a function of orbital period. The symbols are the same as those in Figure 4. All data are below the dotted line, with a form of f = a × P + b where a = 0.190 and b = −0.0665.

      Standard image High-resolution image

      5. Final Remarks

      Our catalog contains basic stellar parameters of 623 galactic EEBs as well as AM parameters of 170 systems, including the AM plus LITE parameters of 31 systems computed in a consistent way. At the moment, it is the most up-to-date and largest catalog of galactic EEB stars ever compiled. Such a comprehensive catalog, containing data spanning a decade since the previous one was published (Bulut & Demircan 2007), can be used for studying various astrophysical subjects, such as the stellar interior structure, synchronization, circularization, statistics, and celestial mechanics occurring in binary and multiple stellar systems, and it also could be useful for researchers planning their observational programs.

      We thank the operating staff of the SOAO 61 cm telescope of KASI. Our warm thanks also go to thank Dr. S. Zola for some helpful suggestions and comments on the draft version of the manuscript, and the anonymous referee for the positive suggestions. This research has been conducted using the SIMBAD and VizieR databases operated by the Centre de Donnees Astronomiques (Strasbourg). We acknowledge the WASP consortium, which comprises the University of Cambridge, Keele University, University of Leicester, The Open University, The Queen's University Belfast, St. Andrews University, and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UK's Science and Technology Facilities Council. The CSS survey "CATALINA" is funded by the National Aeronautics and Space Administration under grant No. NNG05GF22G issued through the Science Mission Directorate Near-Earth Objects Observations Program. The CRTS survey is supported by the US National Science Foundation under grants AST-0909182 and AST-1313422. Observations at Mt. Suhora were supported by Polish NCN grant No. 2011/03/D/ST9/01808 and by a grant of the Polish Ministry of Science and Higher Education, No. 204255/E-347/SPUB/2016/1-1. C.-H.K. was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (NRF-2015R1D1A1A01058924) and the Korea government (MEST) (No. 2017R1A4A1015178).

      Footnotes

      • TIDAK (TIming DAtabase at Krakow) is a database system of timings of the EB systems whose early version was introduced by Kreiner et al. (2001). It has various functions that save any timings, draw their ETDs, and determine simple light elements such as a linear or quadratic ephemeris. At present (2018 January), about 234,600 timings for 7580 systems are listed in TIDAK. At the moment the eclipse timings in the TIDAK database are not available in a public domain. We are going to change our web page (http://www.as.up.krakow.pl/ephem) in the near future, so that the TIDAK database can be shared with the community.

      • The photographic plate time of minimum light is usually the time of the mid-exposure of a photographic plate, taken accidentally when the brightness of a star was near minimum. Therefore, photographic plate times usually have large uncertainties compared with other types' eclipse times of minimum lights.

      Please wait… references are loading.
      10.3847/1538-4365/aab7ef