Skip to main content

Advertisement

Log in

Probabilistic correction of RCM precipitation in the Basque Country (Northern Spain)

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A parametric quantile–quantile transformation is used to correct the systematic errors of precipitation projected by regional climate models. For this purpose, we used two new probability distributions: modified versions of the Gumbel and log-logistic distributions, which fit to the precipitation of both wet and dry days. With these tools, the daily probability distribution of seven regional climate models was corrected: Aladin-ARPEGE, CLM-HadCM3Q0, HIRHAM-HadCM3Q0, HIRHAM-BCM, RECMO-ECHAM5-rt3, REMO-ECHAM-rt3 and PROMES-HadCM3Q0. The implemented method presents an error less than 5 % in the simulation of the average precipitation and 1 % in the simulation of the number of dry days. For the study area, an intensification of daily and subdaily precipitation is expected under the A1B scenario throughout the 21st century. This intensification is interpreted as a consequence of the process of ‘mediterraneanisation’ of the most southern ocean climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Cont 19:716–723

    Article  Google Scholar 

  • Alves M, Verdière AC (1999) Instability dynamics of a subtropical jet and applications to the Azores front-current system: eddy-driven mean flow. J Phys Oceanogr 29:837–864

    Article  Google Scholar 

  • Begueria S (2005) Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value. J Hydrol 303:215–230

    Article  Google Scholar 

  • Benestad RE (2010) Downscaling precipitation extremes. Correction of analog models through PDF predictions. Theor Appl Climatol 100:1–21

    Article  Google Scholar 

  • Capel-Molina JJ (2000) El clima de la Península Ibérica. Ariel Geografia, Barcelona

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisäinen J, Rinke A, Sarr A, Whetton YP (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change (2007): The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57:16–26

    Article  Google Scholar 

  • Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, De Castro M, Van Den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Chang 81:53–70

    Article  Google Scholar 

  • Elshamy ME, Seierstad IA, Sorteberg A (2009) Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol Earth Syst Sci 13:551–565

    Article  Google Scholar 

  • Formayer H, Haas P (2010) Correction of RegCM3 model output data using a rank matching approach applied on various meteorological parameters. In Deliverable D3.2 RCM output localization methods (BOKU contribution of the FP 6 CECILIA project in http://www.cecilia-eu.org/. Accessed 28 June 2012

  • Fowler HJ, Cooley D, Sain SR, Thurston M (2010) Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment. Extremes 13:241–267. doi:10.1007/s10687-010-0101-y

    Article  Google Scholar 

  • Furrer R, Nychka D, Sain S (2012) fields: tools for spatial data. R package version 6.6.3. http://CRAN.R-project.org/package=fields. Accessed 28 June 2012

  • Garmendia MI, Pérez C, Rodríguez C, Garmendia J (1989) Factores determinantes de la precipitación anual en la vertiente cantábrica. Acta Samaltina de Ciencias 67:113–117, 3 Ref

    Google Scholar 

  • Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Chang 57:27–42

    Article  Google Scholar 

  • Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. Agr For Met 138:44–53

    Article  Google Scholar 

  • Kallache M, Vrac M, Naveau P, Michelangeli P-A (2011) Nonstationary probabilistic downscaling of extreme precipitation. J Geophys Res 116, D05113. doi:10.1029/2010JD014892

    Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Let 34, L06805

    Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48, RG3003. doi:10.1029/2009RG000314

    Article  Google Scholar 

  • Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov's distribution. J Stat Software 8/18

    Google Scholar 

  • Martín-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int J Clim 24:959–971

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collin WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Mendizabal M, Moncho R, Torp P, Sepúlveda J, Gonzalez-Aparicio I (2013) Uncertainty analysis on flood assessment due to regional climate models. In: Klijn F, Schweckendiek T (eds) Comprehensive flood risk management. CRC, London, 978-0-415-62144-12013

    Google Scholar 

  • Michelangeli P-A, Vrac M, Loukos H (2009) Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys Res Let 36, L11708. doi:10.1029/2009GL038401

  • Moncho R, Belda F, Caselles V (2009a) Climatic study of the exponent n of the IDF curves of the Iberian Peninsula. Tethys 6:3–14

    Google Scholar 

  • Moncho R, Chust G, Caselles V (2009b) Análisis de la precipitación del País Vasco en el período 1961–2000 mediante reconstrucción espacial. Nimbus 23–24:149–170

    Google Scholar 

  • Moncho R, Chust G, Caselles V (2012) Alternative model for precipitation probability distribution: application to Spain. Clim Res 51:23–33. doi:10.3354/cr01055

    Article  Google Scholar 

  • Moreno JM (2005) Principales conclusiones de la evaluación preliminar de los impactos en España por efecto del cambio climático. Oficina Española de Cambio Climático (OECC), Ministerio de Medio Ambiente, Madrid

  • Niehörster F, Fast I, Huebener H, Cubasch U (2008) The stream one ENSEMBLES projections of future climate change. Ensembles Technical Report no. 3, 2008

  • Olcina J (2008) Riesgo de inundaciones y ordenación del territorio en España. Documents d'Anàlisi Geogràfica 51:178–180

    Google Scholar 

  • Peliz A, Rosa TL, Santos AMP, Pissarra JL (2002) Fronts, jets, and counterflows in the Western Iberian upwelling system. J Mar Syst 35:61–77

    Article  Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org. Accessed 28 June 2012

  • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929

    Article  Google Scholar 

  • Scholz FW, Stephens MA (1987) K-sample Anderson–Darling tests. J Am Stat Assoc 399:918–924

    Google Scholar 

  • Sekhon JS (2010) Matching: multivariate and propensity score matching with balance optimization. R package version 4.7-11. http://CRAN.R-project.org/package=Matching. Accessed 28 June 2012

  • Themeβl M-J, Gobiet A, Leuprecht A (2010) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Clim 31:1530–1544. doi:10.1002/joc.2168

    Google Scholar 

  • Turco M, Quintana-Seguí P, Llasat MC, Herrera S, Gutiérrez JM (2011) Testing MOS Precipitation Downscaling for ENSEMBLES Regional Climate Models over Spain. J Geophys Res 116, D18109. doi:10.1029/2011JD016166

  • Uriarte A, Collins M, Cearreta A, Bald J, Evans G (2004) Sediment supply and distribution. In: Borja, A., Collins, M. (eds.) Oceanography and marine environment of the Basque Country. Elsevier Oceanogr Ser 70:97–131

    Article  Google Scholar 

  • Watterson IG (2005) Simulated changes due to global warming in the variability of precipitation and their interpretation using a gamma-distributed stochastic model. Adv Water Resourc 28:1368–1381

    Article  Google Scholar 

  • Watterson IG, Dix MR (2003) Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J Geophys Res 108(D13):4397

    Article  Google Scholar 

  • Widmann M, Bretherton CS (2003) Statistical precipitation downscaling over the Northwestern United States using numerically simulated precipitation as a predictor. J Climate 16:799–816

    Article  Google Scholar 

Download references

Acknowledgments

This work is the last part of the doctoral thesis written at the Department of Earth Physics of the University of Valencia. This work is supported by the Department of Environment, Regional Planning, Agriculture and Fisheries of the Basque Government (K-Egokitzen II project, Etortek Funding Program). Likewise, we acknowledge the State Meteorological Agency of Spain (AEMET) and Hydrographics Confederations of Ebro (CHE) and Júcar (CHJ) for providing the data for this study. In particular, we thank José Ángel Nuñez, head of the Department of Climatology AEMET delegation in Valencia, and Margarita Martín, AEMET delegate in the Basque Country, for their helpful comments. Finally, it is fair to acknowledge the support of Maddalen Mendizabal (Tecnalia) especially for raising the issue of probability of daily precipitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Monjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monjo, R., Chust, G. & Caselles, V. Probabilistic correction of RCM precipitation in the Basque Country (Northern Spain). Theor Appl Climatol 117, 317–329 (2014). https://doi.org/10.1007/s00704-013-1008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-1008-8

Keywords

Navigation