Skip to main content
Log in

Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

During 2009–2011, Colombia experienced extreme hydroclimatic events associated with the extreme phases of El Niño–Southern Oscillation (ENSO). Here, we study the dynamics of diverse land-atmosphere phenomena involved in such anomalous events at continental, regional, and local scales. Standardized anomalies of precipitation, 2-m temperature, total column water (TCW), volumetric soil water (VSW), temperature at 925 hPa, surface sensible heat (SSH), latent heat (SLH), evaporation (EVP), and liquid water equivalent thickness (LWET) are analyzed to assess atmosphere-land controls and relationships over tropical South America (TropSA) during 1986–2013 (long term) and 2009–2011 (ENSO extreme phases). An assessment of the interannual covariability between precipitation and 2-m temperature is performed using singular value decomposition (SVD) to identify the dominant spatiotemporal modes of hydroclimatic variability over the region’s largest river basins (Amazon, Orinoco, Tocantins, Magdalena-Cauca, and Essequibo). ENSO, its evolution in time, and strong and consistent spatial structures emerge as the dominant mode of variability. In situ anomalies during both extreme phases of ENSO 2009–2011 over the Magdalena-Cauca River basins are linked at the continental scale. The ENSO-driven hydroclimatic effects extend from the diurnal cycle to interannual timescales, as reflected in temperature data from tropical glaciers and the rain-snow boundary in the highest peaks of the Central Andes of Colombia to river levels along the Caribbean lowlands of the Magdalena-Cauca River basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aceituno P (1989) On the functioning of the southern oscillation in the South American sector. Part II. Upper-air circulation. J Clim 2(4):341–355

    Article  Google Scholar 

  • Albergel C et al (2013) Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J Hydrometeorol 14:1259–1277. https://doi.org/10.1175/JHM-D-12-0161.1

    Article  Google Scholar 

  • Arias PA, Martínez JA, Vieira SC (2015) Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim Dyn 45(9–10):2861–2884. https://doi.org/10.1007/s00382-015-2511-7

    Article  Google Scholar 

  • Avila LA, Stewart SR (2013) Atlantic hurricane season of 2011. Mon Wea Rev 141(8):2577–2596

    Article  Google Scholar 

  • Barreiro M, Chang P, Saravanan R (2002) Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J Clim 15(7):745–763

    Article  Google Scholar 

  • Barreiro M, Diaz N (2011) Land-atmosphere coupling in El Niño influence over South America. Atm Sc Lett 12:351–355. https://doi.org/10.1002/asl.348

    Article  Google Scholar 

  • Bedoya M, Contreras C and Ruiz F (2010) Alteraciones del régimen hidrológico y de la oferta hídrica por variabilidad y cambio climático en Colombia. Estudio Nacional del Agua 2010, pp 282-320. IDEAM. ISBN: 978-958-8067-32-2

  • Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata basin in South America. J Hydrometeorol 3(6):630–645

    Article  Google Scholar 

  • Berg A et al (2015) Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J Clim 28:1308–1328

    Article  Google Scholar 

  • Bjornsson H, Venegas SA (1997) A manual for EOF and SVD analyses of climatic data. CCGCR Report 97(1)

  • Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602. https://doi.org/10.1029/2012GL053055

    Google Scholar 

  • Builes-Jaramillo A, Marwan N, Poveda G, Kurths J (2017) Nonlinear interactions between the Amazon River basin and the tropical North Atlantic at interannual timescales. Clim Dyn:1–19. https://doi.org/10.1007/s00382-017-3785-8

  • CEPAL, Comisión Económica para América Latina y el Caribe (2012) Valoración de daños y pérdidas. Ola invernal en Colombia. Bogotá, Mission BID-CEPAL, pp 2010–2011

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q JR Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dirmeyer PA, Schlosser CA, Brubaker KL (2009) Precipitation, recycling, and land memory: an integrated analysis. J Hydrometeorol 10:278–288. https://doi.org/10.1175/2008JHM1016.1

    Article  Google Scholar 

  • Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T et al (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:L06702. https://doi.org/10.1029/2010GL046582

    Article  Google Scholar 

  • Eltahir EA (1998) A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34:765–776. https://doi.org/10.1029/97WR03499

    Article  Google Scholar 

  • Galarneau TJ Jr, Hamill TM, Dole RM, Perlwitz J (2012) A multiscale analysis of the extreme weather events over western Russia and northern Pakistan during July 2010. Mon Wea Rev 140(5):1639–1664

    Article  Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609. https://doi.org/10.1175/2008JCLI2429.1

    Article  Google Scholar 

  • Grumm RH (2011) The central European and Russian heat event of July–August 2010. Bull Amer Meteorol Soc 92(10):1285–1296

    Article  Google Scholar 

  • Gutiérrez, F., and Dracup, J. A. (2001). An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Nino–Southern Oscillation indicators. J Hydrol 246(1):181–196

  • Hastenrath S (1990) Climate dynamics of the tropics. Kluwer Academic Publishers

  • Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC (2013) Impact of the 2010–2011 La Nina phenomenon in Colombia, South America: the human toll of an extreme weather event. Appl Geogr 39:16–25. https://doi.org/10.1016/j.apgeog.2012.11.018

    Article  Google Scholar 

  • Houze RA Jr, Rasmussen KL, Medina S, Brodzik SR, Romatschke U (2011) Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull Amer Meteorol Socy 92(3):291–298

    Article  Google Scholar 

  • IDEAM (2013) Glaciares de Colombia. Más que montañas con hielo. Bogotá, 344 p

  • IGAC-IDEAM-DANE (2011) Reporte final de áreas afectadas por inundaciones 2010–2011 con información de imágenes de satélite a Junio 6 de. IDEAM, Bogota, p 2011

    Google Scholar 

  • Kolstad EW, Barnes EA, Sobolowski SP (2017) Quantifying the role of land–atmosphere feedbacks in mediating near-surface temperature persistence. Quart J Roy Meteorol Socy 143(704):1620–1631

    Article  Google Scholar 

  • Koster RD, Suarez MJ (1999) A simple framework for examining the interannual variability of land surface moisture fluxes. J Clim 12:1911–1917

    Article  Google Scholar 

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:W04531. https://doi.org/10.1029/2011WR011453

    Article  Google Scholar 

  • Lau WK, Kim KM (2012) The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J Hydrometeorol 13(1):392–403

    Article  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554. https://doi.org/10.1126/science.1200807

    Article  Google Scholar 

  • Mapes BE, Warner TT, Xu M (2003) Diurnal patterns of rainfall in northwestern South America. Part III: diurnal gravity waves and nocturnal convection offshore. Mon Wea Rev 131:830–844

    Article  Google Scholar 

  • Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17(12):2261–2280

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38. https://doi.org/10.1029/2011GL047436

  • Mayer M, Trenberth KE, Haimberger L, Fasullo JT (2013) The response of tropical atmospheric energy budgets to ENSO. J Clim 26:4710–4724

    Article  Google Scholar 

  • Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the US CLIVAR drought experiments. J Clim 24:1801–1820

    Article  Google Scholar 

  • Negrón Juárez RI, Li W, Fu R, Fernandes K, de Oliveira Cardoso A (2009) Comparison of precipitation datasets over the tropical South American and African continents. J Hydrometeorol 10(1):289–299

    Article  Google Scholar 

  • Otto FEL, Massey N, vanOldenborgh GJ, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39:L04702. https://doi.org/10.1029/2011GL050422

    Article  Google Scholar 

  • Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large scale oceanic atmospheric phenomena. J Clim 10:2690–2702

    Article  Google Scholar 

  • Poveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla R (2001) Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia. Water Resour Res 37(8):2169–2178

    Article  Google Scholar 

  • Poveda G, Mesa OJ, Waylen PR (2003) Non-linear forecasting of river flows in Colombia based upon ENSO and its associated economic value for hydropower generation. In: Diaz H, Morehouse B (eds) Climate and water. Transboundary challenges in the Americas. Kluwer, Dordrecht, pp 351–371

    Google Scholar 

  • Poveda G (2004) The hydro-climatology of Colombia: a synthesis from inter-decadal to diurnal timescales. Rev Acad Colomb Cienc 28(107):201–222

    Google Scholar 

  • Poveda G et al (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Wea Rev 133:228–240

    Article  Google Scholar 

  • Poveda G, Waylen PR, Pulwarty R (2006) Modern climate variability in northern South America and southern Mesoamerica. Palaeogeo Palaeoclim Palaeoecol 234:3–27

    Article  Google Scholar 

  • Poveda G, Pineda K (2009) Reassessment of Colombia’s tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade? Advan Geos 22:107–116

    Article  Google Scholar 

  • Poveda G, Alvarez DM, Rueda OA (2011) Hydroclimatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249

    Article  Google Scholar 

  • Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour Res 50:98–118. https://doi.org/10.1002/2013WR014087

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40

    Article  Google Scholar 

  • Seneviratne, S. I., & Stöckli, R. (2008). The role of land-atmosphere interactions for climate variability in Europe. In Climate variability and extremes during the past 100 years (pp. 179–193). Springer Netherlands

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99:125–161

    Article  Google Scholar 

  • Taylor CM, de Jeu RA, Guichard F, Harris PP, Dorigo WA (2012) Afternoon rain more likely over drier soils. Nature 489:423–426

    Article  Google Scholar 

  • Tootle GA, Piechota TC, Gutierrez F (2008) The relationships between Pacific and Atlantic Ocean sea surface temperatures and Colombian streamflow variability. J Hydrol 349(3–4):268–276

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:L14703. https://doi.org/10.1029/2005GL022760

    Article  Google Scholar 

  • Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Chang 115:283–290. https://doi.org/10.1007/s10584-012-0441-5

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res 117:D17103. https://doi.org/10.1029/2012JD018020

    Article  Google Scholar 

  • van der Ent RJ, Savenije HH, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46. https://doi.org/10.1029/2010WR009127

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000

    Article  Google Scholar 

  • Wang H, Fu R (2004) Influence of cross-Andes flow on the South American low-level jet. J Clim 17(6):1247–1262

    Article  Google Scholar 

  • Webster PJ, Toma VE, Kim HM (2011) Were the 2010 Pakistan floods predictable? Geophys Res Lett 38(4). https://doi.org/10.1029/2010GL046346

  • Wohl E, Barros A, Brunsell N, Chappell N, Coe M, Giambelluca T, Goldsmith S, Harmon R, Hendrickx JMH, Juvik J, McDonnell J, Ogden F (2012) The hydrology of the humid tropics. Nat Clim Chang 2(9):655–662

  • Yin L, Fu R, Zhang Y-F, Arias PA, Fernando DN, Li W, Fernandes K, Bowerman AR (2014) What controls the interannual variation of the wet season onsets over the Amazon? J Geophys Res Atmos 119:2314–2328. https://doi.org/10.1002/2013JD021349

    Article  Google Scholar 

Download references

Acknowledgements

M. Bedoya’s work was supported through “Vulnerability and Adaptation to Climate Extremes in the Americas (VACEA),” part of the International Research Initiative on Adaptation to Climate Change, International Development Research Centre (IDRC) of Canada. The work of G. Poveda and J. J. Vélez made part of the contribution of Universidad Nacional de Colombia to VACEA. We are grateful to IDEAM of Colombia for allowing access to hydrological data. Part of G. Poveda’s work was made possible through a visiting scientist fellowship from the National Center for Atmospheric Research (NCAR), in Boulder, CO, USA. NCAR is sponsored by the National Science Foundation. We are grateful to Yuhan Rao for his comments on the paper. We are also grateful for access to ERA-Interim, GPCC, and GRACE data processed by Sean Swenson with the gravity solutions from the CSR processing center supported by the NASA MEaSUREs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Mauricio Bedoya-Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedoya-Soto, J.M., Poveda, G., Trenberth, K.E. et al. Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands. Theor Appl Climatol 135, 1531–1544 (2019). https://doi.org/10.1007/s00704-018-2452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2452-2

Navigation