Skip to main content
Log in

The Garzón Massif, Colombia-a new ultrahigh-temperature metamorphic complex in the Early Neoproterozoic of northern South America

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Garzón Complex of the Garzón Massif in SW Colombia is composed of the Vergel Granulite Unit (VG) and the Las Margaritas Migmatite Unit (LMM). Previous studies reveal peak temperature conditions for the VG of about 740 °C. The present study considers the remarkable exsolution phenomena in feldspars and pyroxenes and titanium-in-quartz thermometry. Recalculated ternary feldspar compositions indicate temperatures around 900–1,000 °C just at or above the ultra-high temperature–metamorphism (UHTM) boundary of granulites. The calculated temperatures range of exsolved ortho- and clinopyroxenes also supports the existence of an UHTM event. In addition, titanium-in-quartz thermometry points towards ultra-high temperatures. It is the first known UHTM crustal segment in the northern part of South America. Although a mean geothermal gradient of ca 38 °C km−1 could imply additional heat supply in the lower crust controlling this extreme of peak metamorphism, an alternative model is suggested. The formation of the Vergel Granulite Unit is supposed to be formed in a continental back-arc environment with a thinned and weakened crust behind a magmatic arc (Guapotón-Mancagua Gneiss) followed by collision. In contrast, rocks of the adjacent Las Margaritas Migmatite Unit display “normal” granulite facies temperatures and are formed in a colder lower crust outside the arc, preserved by the Guapotón-Mancagu Gneiss. Back-arc formation was followed by inversion and thickening of the basin. The three units that form the modern-day Garzón Massif, were juxtaposed upon each other during collision (at ca. 1,000 Ma) and exhumation. The collision leading to the deformation of the studied area is part of the Grenville orogeny leading to the amalgamation of Rodinia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique with petrological applications. Can Mineral 29:833–855

    Google Scholar 

  • Breton NJ, Thomson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237

    Article  Google Scholar 

  • Brown M (2006a) From P-T-age to secular change and global tectonic regimes (or Essene in reverse–from granulites to blueschists and eclogites over time). American Geophysical Union, Fall Meeting 2006, abstract V41E-01

  • Brown M (2006b) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34:961–964

    Article  Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev 49:193–234

    Article  Google Scholar 

  • Brown M (2008) One-sided subduction, extreme crustal metamorphism and tectonothermal regimes on Earth. Geophysical Research Abstracts, vol. 10, EGU2008-A-01282

  • Casallas Mayeli G (2003) Estudio petrográphico, geochemico y analysis textural de las migmatitas de las granulitas del Vergel y neis textural de las Margaritas en sus localidades tipo, aflorantes en la parte surdel Macizo de Garzón, planchas 389-Timaná y 414-l Doncello. Diploma thesis, Universidad National de Bogota, p 122, unpublished

  • Cawood PA, Causland PJA, Dunning GR (2001) Opening Iapetus: constraints from the Laurentian margin in New Foundland. Geol Soc Am Bull 113:443–453

    Article  Google Scholar 

  • Cherniak DJ, Watson EB, Wark DA (2007) Ti diffusion in quartz. Chem Geol 236:65–74

    Article  Google Scholar 

  • Collins WJ (2002a) Hot orogens, tectonic switching, and creation of continental crust. Geology 30:535–538

    Article  Google Scholar 

  • Collins WJ (2002b) Nature of extensional accretionary orogens. Tectonics 21. doi:10.1029/2000TC001272

  • Cordani UG, Cardona IA, M Jimenez ID, Liu D, Nutman AP (2005) Geochronology of Proterozoic basement inliers in the Colombian Andes: tectonic history of remnants of a fragmented Grenville belt. In: Vaughan ARM, Leat PT, Pankhurst RJ (eds) Terrane processes at the Margins of Gondwana. Geological Society, London, Special Publications, 246, pp 329–346

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75:544–559

    Google Scholar 

  • Fitzsimons IC, Harley SJ (1994) Garnet coronas in scapolite-wollastonite calcsilicates from east Antarctica—the application and limitations of activity-corrected grids. J Metamorph Geol 12:761–777

    Article  Google Scholar 

  • Frost BR, Chacko T (1989) The granulite uncertainty principle: limitations on thermobarometry in granulites. J Geol 97:435–450

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–216

    Google Scholar 

  • Grucic D, Stipp M, Wooden J (2009) Thermometry of quartz mylonites. American Geophysical Union, Fall meeting abstract #MR33A-1658

  • Harley SL (1998) On the occurrence of ultrahigh-temperature crustal metamorphism. In: Treloar PJ, O´Brien PJ (eds) What drives metamorphism and Metamorphic reactions? Geological Society, London, Special Publication 138, 81–107

  • Harley SJ (2008) Refining the P–T records of UHT crustal metamorphism. J Metamorph Geol 26:125–154

    Article  Google Scholar 

  • Hokada T (2001) Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining 1100 °C in the Archean Napier Complex, East Antarctica. Am Mineral 86:932–938

    Google Scholar 

  • Holland TJB (1983) The experimental determination of activities in disordered and short-range ordered jadeitic pyroxenes. Contrib Mineral Petrol 82:214–220

    Article  Google Scholar 

  • Hyndman RD, Currie CA, Mazzotti SP (2005) Subduction zone back arcs, mobile belts, and orogenic heat. GSA Today 15:4–10

    Google Scholar 

  • Ingeominas and Geoestudios (2001) Geologia de las planchas 367, 368, 389, 390 y 414. Licitación 004 de 1999 (Escala: 1:100.000), Bogota

  • Jiménez-Mejía DM (2003) Caracterizacáo metamórfica e geocronológica das rochas proterozóicas do Macicoo de Garzón–Sudeste dos Andes da Colómbia. Unpublished MSc. Thesis, Universidade de Sáo Paulo, Sáo Paulo, Brazil

  • Jiménez-Mejía DM, Caetano J, Cordani UG (2006) P-T-t conditions of high–grade metamorphic rocks of the Garzón Massif, Andean basement, SE Colombia. J S Am Earth Sci 21:322–336

    Article  Google Scholar 

  • Keller M (1999) Argentina Precordillera: sedimentary and plate tectonic history of a Laurentian crustal fragment in South America. Geological Society of America Special Papers 341

  • Kelsey DE (2008) On ultrahigh-temperature crustal metamorphism. Gondwana Res 13:1–29

    Article  Google Scholar 

  • Kohn MJ, Northrup CJ (2010) Taking mylonites into account. Geology 2009, 37: 47–5.0

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Kroonemberg SB (1982a) Litologıá, metamorfismo y origen de las granulitas del Macizo de Garzón, Cordillera Oriental (Colombia). Geol Norandina 6:39–46

    Google Scholar 

  • Kroonemberg SB (1982b) A Grenvillian granulite belt in the Colombian Andes and its relations to the Guiana Shield. Geol Mijnb 61:325–333

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68: 477–493

    Google Scholar 

  • McDade P, Harley SL (2001) A petrogenetic grid for aluminous granulite facies metapelites in the KFMASH system. J Metamorph Geol 19:45–59

    Article  Google Scholar 

  • Murphy JB, Pisarevsky SS, Nance RD, Keppie JD (2004) Neoproterozoic-early Paleozoic evolution of peri-Gondwana terranes: implications for Laurentia-Gondwana connections. Int J Earth Sci 93:659–682

    Article  Google Scholar 

  • Raase P (1974) Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contrib Mineral Petrol 45:231–236

    Article  Google Scholar 

  • Rasband W (1996) ImageJ-software for image analyses. National Institutes of Health, USA

    Google Scholar 

  • Rodriguez G, Zapata G, Velasquez ME, Cossio U, Londoño AC (2002) Geología de las planchas 367, 368, 389, 391 y 414. Departamentos del Caqueta y del Huila Medellín. Ingeominas, Informe Interno

  • Seck HA (1971) Koexistierende Alkalifeldspäte und Plagioclase im system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-H2O bei Temperaturen von 650”C bis 900”C. N Jb Mineral (Abh) 5:315–345

    Google Scholar 

  • Sizova E, Gerya T, BrownM PLL (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116:209–229

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, Washington, p 806

    Google Scholar 

  • Stipská P, Powell R (2005) Does ternary feldspar constrain the metamorphic conditions of high-grade meta-igneous rocks? evidence from orthopyroxene granulites, Bohemian Massif. J Metamorph Geol 23:627–647

    Article  Google Scholar 

  • Thomas JB, Warson B, Spear F, Shemella PT, Nayak SK, Lanzirotti K (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol. doi:10.1007/s00410-010-0505-3

  • Touissant JE (1993) Evolución Geológica de Colombia. Precabrico-Paleozóico. Universidad Nacional de Colombia, Colombia, p 134

    Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Harley and P. Tropper for their very constructive reviews and inspiring thoughts. We thank R. Rhede and O. Appelt (GeoForschungszentrum Potsdam) as well as R. Mielke for their support during analytical work. Many thanks to A. Möller and P. O´Brien, for their critical and helpful suggestions. B. Fabian improved the quality of the drawing. U.A is indebted to A. Concha-Perdomo and her family and M. Moreno for their kind hospitality during the stay in Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Altenberger.

Additional information

Editorial handling: G. Hoinkes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenberger, U., Mejia Jimenez, D.M., Günter, C. et al. The Garzón Massif, Colombia-a new ultrahigh-temperature metamorphic complex in the Early Neoproterozoic of northern South America. Miner Petrol 105, 171–185 (2012). https://doi.org/10.1007/s00710-012-0202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0202-1

Keywords

Navigation