Skip to main content

Advertisement

Log in

The impact of climate change under different thinning regimes on carbon sequestration in a German forest district

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

The objective of this paper is to assess how much carbon (C) is currently stored in a forest district in Thuringia, Germany, and how the carbon stocks will develop up to the year 2099 with a changing climate and under various management regimes (including no management), with different assumptions about carbon dioxide (CO2) fertilization effects. We applied the process-based model 4C and a wood product model to a forest district in Germany and evaluated both models for the period from 2002 to 2010, based on forest inventory data for the stands in the district. Then, we simulated the growth of the stands in the forest district under three different realizations of a climate change scenario, combined with different management regimes. Our simulations show that in 2099, between 630 and 1149 t C ha−1 will be stored in this district. The simulations also showed that climate change affects carbon sequestration. The no management strategy sequestered the highest amount of carbon (8.7 t C ha−1 year−1), which was greater than the management regimes. In the model, the possible fertilization effect of CO2 is an important factor. However, forest management remains the determining factor in this forest district.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez S, Ortiz C, Díaz-Pine E, Rubio A (2014) Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: a case study using the CO2Fix model. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-014-9565-4

    Google Scholar 

  • Borys A, Lasch P, Suckow F, Reyer C (2013) Carbon storage in beech stands depending on forest management regime and climate change. Allg Forst Jagdzeitung 184(1–2):26–35

    Google Scholar 

  • Dittmar O, Knapp E, Lembcke G (1983) Buchenertragstafel. Eberswalde, p 59

  • Eggers T (2002) The impacts of manufacturing and utilization of wood products on the European carbon budget. European Forest Institute, Joensuu

    Google Scholar 

  • Ertelt W (1961) Ertragstafel der Eichen, mäßige Durchforstung. at: Ertelt, W. (1963): Ertragstafelauszüge. Für den gebrauch in der praxis. 2. neu bearb. u. ergänzte Aufl., Neumann-Verlag Radebeul

  • FA (2010) Thüringer Forsteinrichtungsanweisung und Anweisung zur Fortschreibung der Waldbiotopkartierung für den Staats- und Körperschaftswald. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt, p 65

  • Federal Forest Report (2009) Waldbericht der Bundesregierung 2009. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV), Berlin, p 117

  • Fiedler HJ, Hofman W (1991) Bodenformen über Muschelkalk im Thüringer Becken. Mitt Dtsch Bodenkundlichen Ges Band 64:49–77

    Google Scholar 

  • Fürstenau C (2008) The impact of silvicultural strategies and climate change on carbon sequestration and other forest ecosystem functions. Dissertation, Universität Potsdam

  • Fürstenau C, Badeck F, Lasch P, Lexer M, Lindner M, Mohr P, Suckow F (2007) Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur J For Res 126(2):225–239

    Article  Google Scholar 

  • German Weather Service (2010) Daten der Klimastationen des Deutschen Wetterdienstes, Offenbach, Homogenisierung der Datensätze am PIK: Österle H, Werner P-C, Gerstengarbe F-W 2006: Qualitätsprüfung, Ergänzung und Homogenisierung der täglichen Datenreihen in Deutschland, 1951–2003: ein neuer Datensatz. http://www.meteo.physik.uni-muenchen.de/dkt/poster.html. /7. Deutsche Klimatagung/, Klimatrends: Vergangenheit und Zukunft, 9–11 October 2006, München

  • Gutsch M, Lasch P, Suckow F, Reyer C (2011) Management of mixed oak-pine forests under climate scenario uncertainty. Forest Syst 20(3):453–563

    Article  Google Scholar 

  • Heinsdorf D, Kraus HH (1990) Schätztafeln für Trockenmasse und Nährstoffspeicherung von Kiefernbeständen. Institut für Forstwissenschaften, Eberswalde, DDR, p 77

  • IPCC (2007) Intergovernmental Panel on Climate Change (Hrsg.): Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Working Group III: mitigation of climate change

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.). Cambridge University Press, Cambridge, UK, and New York, NY, USA

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Report No. 103. FAO, Rome

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140(2–3):227–238. doi:10.1016/S0378-1127(00)00282-6

    Article  Google Scholar 

  • Kahl T (2008) Kohlenstofftransport aus dem Totholz in den Boden, Fakultät für Forst- und Umweltwissen- schaften: Freiburg im Breisgau, Albert-Ludwigs-Universität, p 108

  • Keane RE, Morgan P, Running SW (1996) FIRE-BGC—a mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the northern Rocky Mountains. United States Department of Agriculture, Forest Service, Intermountain Research Station, Ogden

    Google Scholar 

  • Kindermann GE, Schörghuber S, Linkosalo T, Sanchez A, Rammer W, Seidl R, Lexer M (2013) Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Manag 8:2

    Article  Google Scholar 

  • Klein D, Höllerl S, Blaschke M, Schulz C (2013) The contribution of managed and unmanaged forests to climate change mitigation—a model approach at stand level for the main tree species in Bavaria. Forests 4:43–69. doi:10.3390/f4010043

    Article  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  Google Scholar 

  • Kramer H, Akςa A (1985) Leitfaden zur Waldmeßlehre. 3. erw. Aufl. Sauerlaender; Frankfurt a. M

  • Landsberg J (2003) Modelling forest ecosystems: state of the art, challenges and future directions. Can J For Res 33:385–397

    Article  Google Scholar 

  • Lasch P, Badeck WF, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For Ecol Manag 207(1–2):59–74

    Article  Google Scholar 

  • Lembcke G, Knapp E, Dittmar O (1975) DDR-Kiefernertragstafel, p 77

  • Ma Z, Peng C, Zhu Q, Chen H, Yu G, Li W, Zhou X, Wang W, Zhang W (2012) Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc Natl Acad Sci U S A 109(7):2423–2427. doi:10.1073/pnas.1111576109

    Article  Google Scholar 

  • Mackey B, Prentice I, Steffen W, House J, Lindenmayer D, Keith H, Berry S (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Chang 3:552–557

    Article  Google Scholar 

  • Mäkelä A, Landsberg J, Burk M, Ter-Mikaelian G, Ågren C, Oliver P, Puttonen (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma ML, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109(1–2):213–241

    Article  Google Scholar 

  • Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497:13–14

    Article  Google Scholar 

  • Mund M, Schulze ED (2006) Impacts of forest management on the carbon budget of European beech (Fagus sylvatica) forests. Allg Forst Jagdzeitung 177:47–63

    Google Scholar 

  • Norby J, Warren J, Iversen C, Medlyn B, Mc Murtrie R (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A 107(45):19369–19373

    Article  Google Scholar 

  • Orlowsky B, Gerstengabe FW, und Werner PC (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92(3–4):209–223

    Article  Google Scholar 

  • Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Chang 1:467–471. doi:10.1038/ nclimate1293

    Article  Google Scholar 

  • Profft I, Mund M, Weber GE, Weller E, Schulze ED (2009) Forest management and carbon sequestration in wood products. Eur J Forest Res 128:399–413

    Article  Google Scholar 

  • Rademacher P, Khanna PK, Eichhorn J, Guericke M (2009) Tree growth, biomass, and elements in tree components of three beech sites. In: BRUMME, R. u. KHANNA, P. K. (Hrsg.) Functioning and management of European beech ecosystems. Springer, Berlin, pp 105–136

  • Reyer C, Lasch P, Mohren G, Sterck F (2010) Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—a model-based analysis. Ann For Sci 67:805

    Article  Google Scholar 

  • Reyer C, Lasch-Born P, Suckow F, Gutsch M, Murawski A, Pilz T (2014) Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci 71(2):211–225

    Article  Google Scholar 

  • Row C, Phelps RB (1991) Carbon cycle impacts of future forest products utilization and recycling trends. Agriculture in a world of change. US Department of Agriculture, Washington

    Google Scholar 

  • Ruiz-Peinado R, Bravo-Oviedo A, Montero G, Del Río M (2014) Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-014-9585-0

    Google Scholar 

  • Sabine C, Field B, Raupach MS (eds) (2004) Integrating humans, climate, and the natural world. The global carbon cycle. Island Press, Washington, pp 17–44

    Google Scholar 

  • Schaber J, Badeck F-W (2005) Plant phenology in Germany over the 20th century. Reg Environ Chang 5(1):37–46

    Article  Google Scholar 

  • Schaber J, Badeck F, Lasch P (1999) Ein Modell der Sukzessionsdynamik europäischer Wälder—forest ecosystems in a changing environment (4C). In: Pelz DR, Rau O, Saborowski J (Eds.) Deutscher Verband Forstlicher Forschungsanstalten, Sektion Forstliche Biometrie und Informatik und Internationale, 11. Tagung und Internationale Biometrische Gesellschaft–Deutsche Region, AG Ökologie, Herbstkolloqium Freiburg/Brsg. Biotechnische Fakultät, Abteilung für die Forstwirtschaft, Ljubljana, pp 212–217

  • Schober R (1975) Ertragstafeln wichtiger Baumarten bei verschiedener Durchforstung. Dritte, neubearbeitete und erweiterte Auflage (1985); J. D. Sauerländer’s Verlag, Frankfurt am Main

  • Schulze ED, Högberg P, van Oene H, Persson T, Harisson A, Read D, Kjoller A, Matteucci G (2000) Interaction between the carbon and nitrogen cycles and the role of biodiversity: a synopsis of a study along a north–south transect through Europe. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems, Springer, Berlin, pp 468–491

  • Schulze ED, Mund M, Profft I, Wutzler T, Weber G, Weller E (2006) Vorbereitung für eine laufende Fortschreibung der Kohlenstoffvorräte in den Wäldern Thüringens, Abschlussbericht zur 12. Phase des BMBF-Projektes “Modelluntersuchung zur Umsetzung des Kyoto-Protokolls”; Jena, Gotha

  • Suckow F, Badeck FW, Lasch P, Schaber J (2001) Nutzung von Level-II-Beobachtungen für Test und Anwendungen des Sukzessionsmodells FORESEE. Beitr Forstwirtschaft Landschaftsökologie 35:84–87

    Google Scholar 

  • Ter-Mikaelian MT, Colombo SJ, Chen J (2014) Effect of age and disturbance on decadal changes in carbon stocks in managed forest landscapes in central Canada. Mitig Adapt Strateg Glob Chang 19:1063–1075. doi:10.1007/s11027-013-9460-4

    Article  Google Scholar 

  • Tjurin A W, Naumenko IM (1956) Forstliches Hilfsbuch für Waldtaxation. Moskva. veröffentlicht in: Ertragstafelauszüge. (1982) Hrg. Zentrale Betriebsakademie Forstwirtschaft, Abteilung Aus- und Weiterbildung: pp 93–96

  • van Vuuren DP, Isaac M, Kundzewicz ZW, Arnell N, Barker T, Criqui P, Berkhout F, Hilderink H, Hinkel J, Hof A, Kitous A, Kram T, Mechler R, Scrieciu S (2011) The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Glob Environ Chang Hum Policy Dimens 21(2):575–591

    Article  Google Scholar 

  • Wäldchen J, Schulze ED, Schöning I, Schrumpf M, Sierra C (2013) The influence of changes in forest management over the past 200 years on present soil organic carbon stocks. For Ecol Manag 289:243–254

  • Wang W, Peng C, Kneeshaw D, Larocque GR, Lei X, Zhu Q, Song X, Tong Q (2013) Modeling the effects of varied forest management regimes on carbon dynamics in jack pine stands under climate change. Can J For Res 43:469–479

    Article  Google Scholar 

  • Wenk G, Gerold D, Römisch K (1985) DDR-Fichtenertragstafel, TU Dresden, Sektion Forstwirtschaft Tharandt, WB FE und Forstliche Ertragskunde, p 64

  • Wirth C, Schulze ED, Schwalbe G, Tomczyk S, Weber G, Weller E (2004) Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens, Thüringer Landesanstalt für Wald, Jagd und Fischerei in Gotha, p 308

  • Wördehoff R, Spellmann H, Evers J, Nagel J (2011) Kohlenstoffstudie Forst und Holz. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, Band 6, Universitätsverlag Göttingen

  • Wutzler T (2008) Projecting the carbon sink of managed forests based on standard forestry data. Ph. Dissertation, Friedrich-Schiller-University Jena

  • Wutzler T, Köstner B, Bernhofer C (2007) Spatially explicit assessment of carbon stocks of a managed forest area in eastern Germany. Eur J For Res 126(3):371–383

    Article  Google Scholar 

  • Yanai RD, Currie WS, Goodale CL (2003) Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6(3):197–212. doi:10.1007/s10021-002-0206-5

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943. doi:10.1126/science.1192666

    Article  Google Scholar 

Download references

Acknowledgments

Special gratitude to the Technical University Dresden, Faculty of Environmental Sciences, Institute of Soil Science and Site Ecology, for abandonment of the complete ground data of the Buchfarter Catena, Professor Dr. M. Heinsdorf (University of applied science Erfurt), who supported the advisory of this study in silvicultural and pedological questions, Alexander Eden for proofreading and language editing, and forestry field office manager J. Klüßendorf and his team for their versatile support and their confidence. We are grateful to the Editor in Chief R.K. Dixon and four anonymous reviewers for their constructive comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Borys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borys, A., Suckow, F., Reyer, C. et al. The impact of climate change under different thinning regimes on carbon sequestration in a German forest district. Mitig Adapt Strateg Glob Change 21, 861–881 (2016). https://doi.org/10.1007/s11027-014-9628-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-014-9628-6

Keywords

Navigation