Skip to main content
Log in

Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Tracking L-band signals of GNSS satellites by radio telescopes became a new observation type in recent years and will be used to improve reference system realizations and links between Earth- and space-fixed frames. First successful test observations were done, with the drawback of being single-frequency only. In order to correct the ionospheric delay by using GNSS phase observations from co-located receivers, the L4R approach was developed. Based on residuals derived by a least-squares processing of the GNSS geometry-free linear combination corresponding corrections could be derived. As a first validation step L4R corrections were applied to GNSS \(L_1\) data analysis. Station coordinate repeatibilities at the 1-cm level were obtained for baselines of a few thousand kilometers. Comparing the derived delay corrections to VLBI ionospheric delays for quasars located in same directions, differences with a standard deviation of 2.2 TECU could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://umbra.nascom.nasa.gov/sdb/yohkoh/ys_dbase/indices_raw/2013, Oct 2014.

  2. http://www.wdcb.ru/stp/data/geomagni.ind/dst/dst2013.txt, Oct 2014.

  3. With respect to a magnetic reference frame (latitude of the geomagnetic north pole is 87.2\(^\circ \) N).

  4. http://lacerta.gsfc.nasa.gov/mk5/help/dbngs_format.txt, Oct 2014.

  5. ftp://ivscc.gsfc.nasa.gov/pub/control/master-format.txt, Oct 2014.

References

  • Alber C, Ware R, Rocken C, Braun J (2000) Obtaining single path phase delays from GPS double differences. Geophys Res Lett 27:2661–2664. doi:10.1029/2000GL011525

    Article  Google Scholar 

  • Altamini Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Bar-Sever YE, Haines B, Wu S, Lemoine F, Willis P (2009) Geodetic reference antenna in space (GRASP): a mission to enhance the terrestrial reference frame. In: COSPAR colloquium: scientific and fundamental aspects of the Galileo program, Padua

  • Beutler G, Baueršíma I, Gurtner W, Rothacher M, Schildknecht T, Geiger A (1988). Atmospheric refraction and other important biases in GPS carrier phase observations. In: Atmospheric effects on geodetic space measurements, monograph 12. School of Surveying, University of New South Wales, Kensington, pp 15–43

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and VLBI from European Centre for medium-range weather forecasts operational analysis data. J Geophy Res 111(B2). doi:10.1029/2005JB003629

  • Corey B (2001) IVS/IGS/ILRS Working Group on GPS phase center mapping. In; Vandenberg NR, Baver KD (eds) International VLBI service for geodesy and astrometry 2000 annual report. NASA/TP-2001-209979

  • Crocetto N, Pingue F, Ponte S, Pugliano G, Sepe V (2008) Ionospheric error analysis in GPS measurements. Ann Geophys 51(4):585–595. doi:10.4401/ag-4456

    Google Scholar 

  • Dach R (2013) Bernese GNSS software: new features in version 5.2. Astronomical Institute, University of Bern, Switzerland

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, vol 640, pp 114

  • Dickey JM (2010) How and why to do VLBI on GPS. In: Behrend D, Baver KD (eds) VLBI2010: from vision to reality, IVS 2010 general meeting Proceedings, NASA/CP2010215864. NASA, Goddard Space Flight Center

  • Duev DA, Calvés GM, Pogrebenko SV, Gurvits LI, Cimo G, Bahamon TB (2012) Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron Astrophys 541:A43. doi:10.1051/0004-6361/201218885

    Article  Google Scholar 

  • Flohrer C, Otten M, Springer T, Dow J (2011) Generating precise and homogeneous orbits for Jason-1 and Jason-2. Adv Space Res 48:152–172. doi:10.1016/j.asr.2011.02.017

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophy Res Lett 32. doi:10.1029/2005GL024342

  • Gordon D (2010) Use of GPS TEC maps for calibrating single band VLBI sessions. In: Behrend D, Baver KD (eds) VLBI2010: from vision to reality, IVS 2010 general meeting Proceedings, NASA/CP2010215864. NASA, Goddard Space Flight Center, pp 242–246

  • Hase H (1999) Phase centre determinations at GPS-satellites with VLBI. In: Proceedings of the 13th working meeting on European VLBI for geodesy and astrometry

  • Haas R, Neidhardt A, Kodet J, Plötz C, Schreiber U, Kronschnabl G, Pogrobenko S, Duev D, Casey S, Martl-Vidal I, Yang J, Plank L (2014) The Wettzell-Onsala G130128 experiment—VLBI observation of a GLONASS satellite. In: Behrend D, Baver K, Armstrong K (eds) IVS 2014 general meeting Proceedings. Science Press

  • Hawarey M, Hobiger T, Schuh H (2005) Effects of the 2nd order ionospheric terms on VLBI measurements. Geophys Res Lett 32:L11304. doi:10.1029/2005GL022729

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orús R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi:10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel À, García-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907. doi:10.1007/s00190-011-0508-5

    Article  Google Scholar 

  • Hobiger T (2006) VLBI as a tool to probe the ionosphere. Ph.D. thesis, Institute of Geodesy and Geophysics, TU Vienna. ISSN: 1811-8380

  • Kikuchi F, Liu Q, Matsumoto K, Hanada H, Kawano N (2008) Simulation analysis of differential phase delay estimation by same beam VLBI method. Earth Planets Space 60(4):391–406

    Article  Google Scholar 

  • Kikuchi F, Liu Q, Hanada H, Kawano N, Matsumoto K, Iwata T, Goossens S, Asari K, Ishihara Y, Tsuruta S-I et al (2009) Picosecond accuracy VLBI of the two subsatellites of SELENE (KAGUYA) using multifrequency and same beam methods. Radio Sci 44(2). doi:10.1029/2008RS003997

  • Kodet J, Plötz USA, Neidhardt A, Kronschnabl G, Haas R, Calvès GM, Pogrebenko S, Rothacher M, Männel B, Plank L, Hellerschmied A (2014) Co-locations of space geodetic techniques on ground and in space. In: Behrend D, Baver K, Armstrong K (eds) IVS 2014 general meeting Proceedings. Science Press

  • Männel B, Rothacher M, Kodet J, Schreiber U, Schmid R (2014) GLONASS Satellites Simultaneously Observed by VLBI, GNSS and SLR. In: Behrend D, Baver K, Armstrong K (eds) IVS 2014 general meeting Proceedings. Science Press

  • Plank L (2013) VLBI satellite tracking for the realization of frame ties. Veröffentlichungen des Departments für Geodäsie und Geoinformation, Vienna University of Technology, Geowissenschaftliche Mitteilungen, p 95

  • Plank L, Böhm J, Schuh H (2014) Precise station positions from VLBI observations to satellites: a simulation study. J Geod 88:1–15. doi:10.1007/s00190-014-0712-1

    Article  Google Scholar 

  • Prölss G (2008) Ionospheric storms at mid-latitude: a short review. Midlatid Ionos Dyn Disturb 181:9–24. doi:10.1029/181GM03

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29(3):577–586. doi:10.1029/94RS00449

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. thesis, Universität Bern. ISBN: 3-908440-01-7

  • Schmid R (2009) Zur Kombination von GPS und VLBI. Ph.D. thesis, Technische Universität München

  • Sekido M, Kondo T, Kawai E (2003) Evaluation of GPS-based ionospheric TEC map by comparing with VLBI data. Radio Sci 38:1069. doi:10.1029/2000RS002620

    Article  Google Scholar 

  • Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70:1393–1454. doi:10.1103/RevModPhys.70.1393

    Article  Google Scholar 

  • Steigenberger P, Rothacher M, Dietrich R, Fitsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophy Res 113. doi:10.1029/2005JB003747

  • Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272. doi:10.1007/s00190-010-0433-z

    Article  Google Scholar 

  • Tierno Ros C, Böhm J, Schuh H (2011) Use of GNSS-derived TEC maps for VLBI observations. In: Proceedings of the 20th meeting of the European VLBI Group for Geodesy and Astrometry

  • Tornatore V, Haas R, Deev D, Pegrebenko S, Casey S, Calvés GM, Keimpema A (2011) Single baseline GLONASS observations with VLBI: data processing and first results. In: Proceedings of the 20th meeting of the European VLBI Group for Geodesy and Astrometry

  • Tornatore V, Haas R, Deev D, Pegrebenko S, Casey S, Calvés GM (2014) Direct VLBI observations of global navigation satellite system signals. In: Rizos C, Willis P (eds) Earth on the edge: science of a sustainable planet. doi:10.1007/978-3-642-37222-3_32

  • Wang K, Meindl M, Geiger A, Rothacher M, Scaramuzza M, Troller M, Truffer P (2014) Assessment of single-difference ionospheric residuals in a regional network for GBAS. In: Proceedings of the 27th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS+ 2014), Tampa, pp 2384–2393

  • Zolesi B, Cander LR (2013) Ionospheric prediction and forecasting. Springer Geophysics, Springer, Berlin. doi:10.1007/978-3-642-38430-1

    Google Scholar 

Download references

Acknowledgments

The authors want to thank IVS and IGS for providing the necessary observations and CODE and TU Vienna for providing GNSS and atmospheric products allowing a suitable processing. They would also like to thank three anonymous reviewers for their assistance in evaluating this paper and their helpful recommendations. This work was done within the project “Co-location of Space Geodetic Techniques on Ground and in Space” which is part of the DFG funded Research Unit “Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space” (FOR 1503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Männel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Männel, B., Rothacher, M. Ionospheric corrections for single-frequency tracking of GNSS satellites by VLBI based on co-located GNSS. J Geod 90, 189–203 (2016). https://doi.org/10.1007/s00190-015-0865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0865-6

Keywords

Navigation