Skip to main content
Log in

Global optimization of the Gauss conformal mappings of an ellipsoid to a sphere

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Gauss conformal mappings (GCMs) of an oblate ellipsoid of revolution to a sphere are those that transform the meridians into meridians, and the parallels into parallels of the sphere. The infinitesimal-scale function associated with these mappings depends on the geodetic latitude and contains three parameters, including the radius of the sphere. Gauss derived these constants by imposing local optimum conditions on certain parallel. We deal with the problem of finding the constants to minimize the Chebyshev or maximum norm of the logarithm of the infinitesimal-scale function on a given ellipsoidal segment (the region contained between two parallels). We show how to solve this minimax problem using the intrinsic function fminsearch of Matlab. For a particular ellipsoidal segment, we get the solution and show the alternation property characteristic of best Chebyshev approximations. For a pair of points relatively close in the ellipsoid at different latitudes, the best minimax GCM on the segment defined by these points is used to approximate the geodesic distance between them by the spherical distance between their projections on the corresponding sphere. This approach, combined with the best locally GCM if the points are on the same parallel, is illustrated by applying it to some case studies but specially to a 10° × 10° region contained between portions of two parallels and two meridians. In this case, the maximum absolute error of this spherical approximation is equal to 2.9 mm occurring at a distance about 1,360 km. This error decreases up to 0.94 mm on an 8° × 8° region of this type. So, the spherical approximation to the solution of the inverse geodesic problem by best GCM can be acceptable in many practical geodetic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bühler WK (1981) Gauss: a biographical study. Springer, New York

    Google Scholar 

  • Chang Sun-Yung A (2004) Non-linear elliptic equations in conformal geometry. In: Zurich lectures in advanced mathematics. European Mathematical Society, Zurich

    Book  Google Scholar 

  • Darboux G (1972) Leçons sur la théorie générale des surfaces et les applications géometriques du calcul infinitésimal I, Livre II, Chapitre IV. Chelsea, Bronx

    Google Scholar 

  • Dombrowski P (1979) 150 years after Gauss’ “disquisitiones generales circa superficies curvas” with the original text of Gauss. Astérisque 62: 1–153

    Google Scholar 

  • Gauss CF (1843) Untersuchungen über Gegenstände der höhern Geodäsie. Abhandlungen der matematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen, II, pp 3–45 [In: Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Zweiter Band, Göttingen, 1845]. [Also in: Carl Friedrich Gauss Werke, vol IV, pp 259–300. Sponsored by the Royal Society of Sciences at Göttingen. General editors: Schering E, Klein F, Brendel M, and Schlesinger L, vols I–XII. Published succesively by Friedrich Andreas Perthes (Gotha), B. G. Teubner (Leipzig), and Julius Springer (Berlin), 1863–1933]. [Also Edited by Frischauf J as No. 177 in Ostwald’s Klassiker der exacten Wissenschaften, Wilhelm Engelmann, Lepzig, 1910]

  • Moritz H (1980) Geodetic Reference System 1980. Bull Geod 54: 395–405

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7: 308–313

    Google Scholar 

  • Rice JR (1964) On the existence and characterization of best nonlinear Tchebycheff approximations. Trans Am Math Soc 110(1): 88–97

    Google Scholar 

  • Scholz E (1992) Gauß und die Begründung der “höheren” Geodäsie. In: Demidov SS, Folkerts M, Rowe DE, Scriba CJ (eds) Amphora: Festschrift für Hans Wussing zu seinem, vol 65. Birkhäuser, Geburtstag, pp 631–647

    Google Scholar 

  • Struik DJ (1988) Lectures on classical differential geometry. Dover, New York (Reprint) [Originally published: Addison-Wesley, Reading (1961)]

  • The Mathworks Inc. (2009a) MATLAB 7 Mathematics. The MathWorks, Inc., Natick. http://www.mathworks.com

  • The Mathworks Inc. (2009b) Optimization Toolbox™: User’s Guide. The MathWorks, Inc., Natick. http://www.mathworks.com

  • Thomas CM, Featherstone WE (2005) Validation of Vincenty’s formulas for the geodesic using a new fourth-order extension of Kivioja’s formula. J Surv Eng ASCE 131: 20–26

    Article  Google Scholar 

  • Thompson EH (1975) A note on conformal map projections. Surv Rev 23(175): 17–28

    Google Scholar 

  • Vincenty T (1975) Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv Rev 22(176): 88–93

    Google Scholar 

  • Watson GA (1970) On an algorithm for nonlinear minimax approximation. Commun ACM 13(3): 160–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Otero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermejo-Solera, M., Otero, J. Global optimization of the Gauss conformal mappings of an ellipsoid to a sphere. J Geod 84, 481–489 (2010). https://doi.org/10.1007/s00190-010-0385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0385-3

Keywords

Navigation