Skip to main content
Log in

Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian massif

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Geochemical and Nd–Sr isotopic compositions and U–Pb zircon ages of two Variscan granites (Neunburg and Oberviechtach) from southern Oberpfalz, NW Bohemian massif, have been investigated in order to place constraints on their formation and on the crustal reworking. Both granites exhibit similar mineralogical, chemical and isotopic characteristics. They have peraluminous compositions (A/CNK ratios 1.2–1.3) and display high K2O/Na2O ratios of 2.2–2.3, consistent with typical S-type granites. In terms of trace elements, they show an enrichment of LREE and strong fractionation between LREE and HREE (LaN/YbN ratios 46 to 60). Compared with the primordial mantle, distinct negative anomalies of several trace elements (Ba, Sr, Nb and Ti) are also observed in both granites. They are further characterised by low initial εNd-values of −6.2 to −8.2 and high initial 87Sr/86Sr ratios of 0.7114 to 0.7147. Zircon U–Pb data indicate that the intrusion of both granites shortly post-dates the HT–LP metamorphism of the Moldanubian basement and crystallised at about 320 Ma. The samples studied contain zircons mostly having xenocrystic cores with diverse morphologies. These inherited zircons have Early Proterozoic to Early Palaeozoic ages. This points to melting of sources comprising substantial sedimentary rocks. The LaN/YbN and TbN/YbN ratios of both granites are the highest so far reported from granitoids within this region. Melting of lower crustal rocks leaving garnet as a restite phase in the source provides a viable mechanism to reproduce the REE characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a,b.
Fig. 3.
Fig. 4a, b.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Ackermann W (1973) Rb–Sr-Datierung einiger Granite des ostbayerischen Kristallins durch Gesamtgesteins- u. Biotitanalysen. Geol Bavarica 68:155–162

    CAS  Google Scholar 

  • Altherr R, Henes-Klaiber U, Hegner E, Satir M, Langer C (1999) Plutonism in the Variscan Odenwald (Germany): from subduction to collision. Int J Earth Sci 88:422–443

    Article  CAS  Google Scholar 

  • Bader H (1959) Erläuterungen zur geologischen Karte von Bayern 1:25,000, Blatt Nr. 6640 Neunburg v. Wald, Bayerisches Geologisches Landesamt, München

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213

    Article  CAS  Google Scholar 

  • Bayerisches Geologisches Landesamt (1959a) Geologische Karte von Bayern 1:25,000, Blatt no. 6640 Neunburg v. Wald, München

    Google Scholar 

  • Bayerisches Geologisches Landesamt (1959b) Geologische Karte von Bayern 1:25,000, Baltt no. 6540 Oberviechtach, München

    Google Scholar 

  • Bhatia MR (1985) Rare earth element geochemistry of Australian Palaeozoic graywackes and mudrocks: provenance and tectonic control. Sediment Geol 45:97–113

    CAS  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    CAS  Google Scholar 

  • Blümel P (1983) The western margin of the Bohemian Massif in Bavaria. Fortsch Mineral 61:171–195

    Google Scholar 

  • Büttner S, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the southeastern margin of the Bohemian massif. Geol Rundsch 86:21–38

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174

    Google Scholar 

  • Chen F, Hegner E, Todt W (2000) Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black forest, Germany: evidence for a Cambrian magmatic arc. Int J Earth Sci 88:791–802

    Article  CAS  Google Scholar 

  • Chen F, Siebel E, Satir M (2002a) Zircon U–Pb and Pb-isotope fractionation during stepwise HF-acid leaching and geochronological implications. Chem Geol (in press)

  • Chen F, Siebel W, Satir M (2002b) Zircon geochronology and geochemistry of the Fürstenstein pluton, Bavarian Forest. 80th Jahrestagung der Deutschen Mineralogischen Gesellschaft, September 8–12, 2002, Hamburg. Eur J Mineral 14(1):33

    Google Scholar 

  • Chen F, Siebel W, Satir M, Terzioglu N, Saka K (2002c) Late Proterozoic continental accretion in the north-western Turkey: evidence from zircon U–Pb and Pb–Pb dating and Nd–Sr isotopes. Int J Earth Sci 91:469–481

    Article  CAS  Google Scholar 

  • Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Christinas P, Köhler H, Müller-Sohnius D (1991) Rb–Sr-Altersbestimmungen an Intrusiva des Hauzenberger Massiv, Nordostbayern. Geol Bavarica 96:109–118

    Google Scholar 

  • Clemens JD (1990) The granulite–granite connection. In: Vielzeuf D, Vidal P (Eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 25–36

  • Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of the late Palaeozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravio-Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153

    CAS  Google Scholar 

  • Düsing C (1959) Erläuterungen zur geologischen Karte von Bayern 1:25,000, Blatt Nr. 6540 Oberviechtach, Bayerisches Geologisches Landesamt, München

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    CAS  Google Scholar 

  • Fischer G (1965) Über die modale Zusammensetzung der Eruptiva im ostbayerischen Kristallin. Geol Bavarica 55:7–33

    Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc Lond, Spec Publ 179:35–61

    Google Scholar 

  • Furnes H, Kryza R, Muszynski A, Pin C, Garmann LB (1994) Geochemical evidence for progressive, rift-related early Palaeozoic volcanism in the western Sudetes. J Geol Soc Lond 151:91–109

    CAS  Google Scholar 

  • Gebauer D, Williams IS, Compston W, Grünenfelder M (1989) The development of the Central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 3.84 b.y. old detrital zircons. Tectonophysics 157:81–96

    CAS  Google Scholar 

  • Grauert B, Hänny R, Soptrajanova G (1973) Age and origin of detrital zircons from the pre-Permian basements of the Bohemian Massif and the Alps. Contrib Mineral Petrol 40:105–130

    CAS  Google Scholar 

  • Grauert B, Hänny R, Soptrajanova G (1974) Geochronology of a polymetamorphic and anatectic gneiss region: the Moldanubicum of the area Lam-Deggendorf, eastern Bavaria, Germany. Contrib Mineral Petrol 45:37–63

    CAS  Google Scholar 

  • Green TH, Pearson NJ (1985) Experimental determination of REE partition coefficients between amphibole and basaltic liquids at high pressure. Geochim Cosmochim Acta 49:1465–1468

    CAS  Google Scholar 

  • Harre W, Kreuzer H, Lenz H, Müller P, Wendt I (1967) Zwischenbericht über K/Ar- und Rb/Sr-Datierungen von Gesteinen aus dem ostbayerisch-österreichischen Kristallin. Datierungsbericht 5/67 Bundesanstalt für Bodenforschung Hannover, BGR Archiv-Nr. 25/338

  • Hecht L, Vigneresse JL, Morteani G (1997) Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. Geol Rundsch 86(suppl):S93–S109

    CAS  Google Scholar 

  • Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc Lond Spec Publ 179:387–399

    Google Scholar 

  • Holdaway MJ (1971) Stability of andalusite and the aluminum silicate phase diagram. Am J Sci 271:97–131

    CAS  Google Scholar 

  • Holl PK, von Drach V, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb–Sr and Sm–Nd isotope variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics 157:179–194

    CAS  Google Scholar 

  • Irving AJ, Frey FA (1978) Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic and rhyolitic composition. Geochim Cosmochim Acta 42:771–787

    CAS  Google Scholar 

  • Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS—a powerful new tool for high precision trace element analysis in Earth sciences: evidence from analysis of selected USGS standards. Chem Geol 83:133–148

    CAS  Google Scholar 

  • Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites from the Bayerische Wald (Variscan belt, Germany). J Petrol 40:601–627

    Article  CAS  Google Scholar 

  • Kalt A, Corfu F, Wijbrans J (2000) Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163

    CAS  Google Scholar 

  • Kay RW, Kay SM (1991) Creation and destruction of lower continental crust. Geol Rundsch 80:259–278

    CAS  Google Scholar 

  • Kay SM, Abbruzzi JM (1996) Magmatic evidence for Neogene lithospheric evolution of the central Andean 'flat-slab' between 30°S and 32°S. Tectonophysics 259:15–28

    CAS  Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. J Geophys Res 99(B12):24323–24339

    CAS  Google Scholar 

  • Köhler H, Müller-Sohnius D (1980) Rb–Sr systematics on paragneiss series from the Bavarian Moldanubicum, Germany. Contrib Mineral Petrol 71:387–392

    Google Scholar 

  • Köhler H, Müller-Sohnius D (1985) Rb–Sr-Altersbestimmungen und Sr-Isotopensystematik an Gesteinen des Regensburger Waldes (Moldanubikum NE Bayern): Teil 1: Paragneisanatexite. N Jb Mineral Abh 151:1–28

    Google Scholar 

  • Köhler H, Müller-Sohnius D (1986) Rb–Sr-Altersbestimmungen und Sr-Isotopensystematik an Gesteinen des Regensburger Waldes (Moldanubikum NE Bayern): Teil 2: Intrusivgesteine. N Jb Mineral Abh 155:219–241

    Google Scholar 

  • Köhler H, Propach G, Troll G (1989) Exkursion zur Geologie, Petrographie und Geochronologie des NE-bayerischen Grundgebirges. Eur J Mineral 1(Beih 2):1–84

    Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues: Abh sächs geol Landesamtes vol 1

    Google Scholar 

  • Kreuzer H, Seidel E, Schüssler U, Okrusch M, Lenz K–L Raschka H (1989) K–Ar geochronology of different tectonic units at the northwestern margin of the Bohemian Massif. Tectonophysics 157:149–178

    CAS  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649

    CAS  Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerske Hory, Krkonose Mountains and Orlice–Sneznik Complex). Int J Earth Sci 90:304–324

    Article  Google Scholar 

  • Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390:159–161

    Article  CAS  Google Scholar 

  • LeMaitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    CAS  Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc Lond Spec Publ 179:131–153

    CAS  Google Scholar 

  • Ludwig KR (1988) Pbdat for MS-Dos—a computer program for IBM-PC compatibles for processing raw Pb–U–Th isotope data. US Geol Surv, Open-file Report 88-542

  • Ludwig KR (1994) Isoplot—a plotting and regression program for radiogenic-isotope data. US Geol Surv, Open-file Report 91-445

  • Ludwig KR (2001) Isoplot/Ex, rev 2.49: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, spec publ no 1a

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Google Scholar 

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineral Society of America, Washington, DC, pp 169–200

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    CAS  Google Scholar 

  • Mpodozis C, Cornejo P, Kay SM, Tittler A (1995) La Franja de Maricunga: Sintesis de la evolucion del Frente Volcanico Oligoceno–Mioceno de la zona sur de los Andes Centrales. Revista Geol Chile 21:273–313

    Google Scholar 

  • Nance WB, Taylor SR (1976) Rare earth element pattern and crustal evolution I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551

    CAS  Google Scholar 

  • Nance WB, Taylor SR (1977) Rare earth element pattern and crustal evolution II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochim Cosmochim Acta 41:225–231

    CAS  Google Scholar 

  • O'Brien PJ, Duyster J, Grauert B, Schreyer W, Stöckhert B, Weber K (1997) Crustal evolution of the KTB drill site: from oldest relics to the late Hercynian granites. J Geophys Res 102(B8):18203–18220

    CAS  Google Scholar 

  • Oliver GJH, Corfu F, Krogh TE (1993) U–Pb ages from SW Poland, evidence for a Caledonian structure zone between Baltica and Gondwana. J Geol Soc Lond 150:355–369

    CAS  Google Scholar 

  • Parrish RR (1987) An improved micro-capsule for zircon dissolution in U–Pb geochronology. Chem Geol 66:99–102

    CAS  Google Scholar 

  • Poller U, Liebetrau V, Todt W (1997) U–Pb single-zircon dating under cathodoluminescence control (CLC-method): application to polymetamorphic orthogneisses. Chem Geol 139:287–297

    Article  CAS  Google Scholar 

  • Propach G (1977) Variscan granitization in the Regensburger Wald, West Germany. N Jb Mineral Mh 1977:97–111

    Google Scholar 

  • Propach G (1989) The origin of a conformable Variscan granite in Bavaria—results of geochemical and geochronological investigations. In: Bonin B, Didier J (eds) Magma–crust interactions and evolution. Theophrasus Publishers, pp 193–209

  • Propach G, Spiegel W, Schulz-Schmalschläger M, Wünsch W, Hecht L (1991) Die Genese des Ödwieser Granodiorits. Geol Bavarica 96:119–138

    Google Scholar 

  • Propach G, Baumann A, Schulz-Schmalschläger M, Grauert B (2000) Zircon and monazite U–Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. N Jb Geol Paläont Mh 2000:345–377

  • Roberts MP, Finger F (1997) Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25:319–322

    CAS  Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, Wiley, New York

    Google Scholar 

  • Schaltegger U (2000) U–Pb geochronology of the southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Intern J Earth Sci 88:814–828

    Article  CAS  Google Scholar 

  • Schüssler U, Oppermann U, Kreuzer H, Seidel E, Okrusch M, Lenz KL, Raschka H (1986) Zur Alterstellung des ostbayerischen Kristallins, Ergebnisse neuer K–Ar-Datierungen. Geol Bavarica 89:12–47

    Google Scholar 

  • Schulz-Schmalschläger M, Propach G, Baumann A (1984) U/Pb Untersuchungen an Zirkonen und Monaziten von Gesteinen des Vorderen Bayerischen Waldes. Fortsch Mineral 62:223–224

    Google Scholar 

  • Siebel W (1995a) Anticorrelated Rb–Sr and K–Ar age discordances, Leuchtenberg granite, NE Bavaria, Germany. Contrib Mineral Petrol 120:197–211

    Article  CAS  Google Scholar 

  • Siebel W (1995b) Constraints on Variscan granite emplacement in northeast Bavaria, Germany: further clues from a petrogenetic study of the Mitterteich granite. Geol Rundsch 84:384–398

    Article  CAS  Google Scholar 

  • Siebel W (1998) Variszischer spät- bis postkollisionaler Plutonismus in Deutschland: Regionale Verbreitung, Stoffbestand und Alterstellung. Z geol Wiss 26:329–358

    CAS  Google Scholar 

  • Siebel W, Höhndorf A, Wendt I (1995) Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270

    Article  CAS  Google Scholar 

  • Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian massif revealed: Gravity data, composition, age relations and phase concept. Geol Rundsch 86(suppl):S45–S63

    CAS  Google Scholar 

  • Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36-53

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure–temperature–time paths. Mineral Soc Am, Washington, DC

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26:207–221

    CAS  Google Scholar 

  • Stettner G (1980) Zum geologischen Aufbau des Fichtelgebirges. Aufschl Sbd 31:391–403

    Google Scholar 

  • Sun SS (1982) Chemical composition and origin of the Earth's primitive mantle. Geochim Cosmochim Acta 46:179–192

    CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford

    Google Scholar 

  • Todt W, Büsch W (1981) U–Pb investigations on zircons from pre-Variscan gneisses. I. A study from the Schwarzwald, West Germany. Geochim Cosmochim Acta 45:1789–1801

    CAS  Google Scholar 

  • van Breemen O, Aftalion M, Bowes DR, Dudek A, Misar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bohemian massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73:89–108

    Google Scholar 

  • van der Molen J, Paterson MS (1979) Experimental deformation of partially-melted granite. Contrib Mineral Petrol 70:299–318

    Google Scholar 

  • Vielzeuf D, Clemens JD, Pin C, Moinet E (1990) Granites, granulites and crustal differentiation. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 59–86

  • von Gaertner HR, von Horstig G, Stettner G, Wurm A (1968) Saxothuringium in Bavaria. In: International Geological Congress, 23rd session, Prague, Guide to excursion C34. Hannover

  • von Quadt A (1997) U–Pb zircon and Sr–Nd–Pb whole-rock investigations from the continental deep drilling (KTB). Geol Rundsch 86:258–271

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    CAS  Google Scholar 

  • Wendt I, Kreuzer H, Müller P, Schmid H (1986) Gesamtgesteins- und Mineraldatierungen des Falkenberger Granits. Geol Jb E34:5–66

    Google Scholar 

  • Wendt I, Höhndorf A, Kreuzer H, Müller P, Stettner G (1988) Gesamtgesteins- und Mineraldatierungen der Steinwaldgranite (NE-Bayern). Geol Jb E42:167–194

    Google Scholar 

  • Wendt I, Carl C, Kreuzer H, Müller P, Stettner G (1992) Ergänzende Messungen zum Friedenfelser Granit (Steinwald) und radiometrische Datierung der Ganggranite im Falkenberger Granit. Geol Jb A137:3–24

    Google Scholar 

  • Wendt I, Ackermann H, Carl C, Kreuzer H, Müller P, Stettner G (1994) Rb/Sr-Gesamtgesteins- und K/Ar-Glimmerdatierungen der Granite von Flossenbürg und Bärnau. Geol Jb E51:3–29

    Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    CAS  Google Scholar 

  • Wiegand J (1993) Geochemische und radiometrische Untersuchungen an den Graniten des Neunburg–Thansteiner Massivs (Oberpfalz). Bonner Geowiss Schr 10, Bonn

  • Wiegand J (1995) Petrologie und Geochemie der Granite des Neunburg-Thansteiner Massivs (Oberpfalz). N Jb Geol Paläont Abh 197:1–35

    Google Scholar 

  • Winchester JA, Floyd PA, Chocyk M, Horbowy K, Kozdroj W (1995) Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. J Geol Soc Lond 152:105–115

    CAS  Google Scholar 

  • Ziegler P (1994) Cenozoic rift systems of western and central Europe. Geol Mijnbouw 73:99–127

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) to W.S. (Si-718/2-1). G. Markl for access to the microprobe for cathodoluminescence analysis and M. Schumann and G. Bartholomä for the XRF analysis are gratefully acknowledged. We sincerely thank T. Vennemann for English improvement, U. Schaltegger and H.J. Förster for constructive comments, and to K. Hammerschmidt and two anonymous reviewers for helpful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Chen, F., Siebel, W. et al. Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian massif. Int J Earth Sci (Geol Rundsch) 92, 173–184 (2003). https://doi.org/10.1007/s00531-003-0310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-003-0310-6

Keywords

Navigation