Skip to main content
Log in

Combining satellite and seismic images to analyse the shallow structure of the Dead Sea Transform near the DESERT transect

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The left-lateral Dead Sea Transform (DST) in the Middle East is one of the largest continental strike-slip faults of the world. The southern segment of the DST in the Arava/Araba Valley between the Dead Sea and the Red Sea, called Arava/Araba Fault (AF), has been studied in detail in the multidisciplinary DESERT (DEad SEa Rift Transect) project. Based on these results, here, the interpretations of multi-spectral (ASTER) satellite images and seismic reflection studies have been combined to analyse geologic structures. Whereas satellite images reveal neotectonic activity in shallow young sediments, reflection seismic image deep faults that are possibly inactive at present. The combination of the two methods allows putting some age constraint on the activity of individual fault strands. Although the AF is clearly the main active fault segment of the southern DST, we propose that it has accommodated only a limited (up to 60 km) part of the overall 105 km of sinistral plate motion since Miocene times. There is evidence for sinistral displacement along other faults, based on geological studies, including satellite image interpretation. Furthermore, a subsurface fault is revealed ≈4 km west of the AF on two ≈E–W running seismic reflection profiles. Whereas these seismic data show a flower structure typical for strike-slip faults, on the satellite image this fault is not expressed in the post-Miocene sediments, implying that it has been inactive for the last few million years. About 1 km to the east of the AF another, now buried fault, was detected in seismic, magnetotelluric and gravity studies of DESERT. Taking together various evidences, we suggest that at the beginning of transform motion deformation occurred in a rather wide belt, possibly with the reactivation of older ≈N–S striking structures. Later, deformation became concentrated in the region of today’s Arava Valley. Till ≈5 Ma ago there might have been other, now inactive fault traces in the vicinity of the present day AF that took up lateral motion. Together with a rearrangement of plates ≈5 Ma ago, the main fault trace shifted then to the position of today’s AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu Taimeh (1988) Structural and applied remote sensing studies at Gharandal-Petra area, Eastern Wadi Araba. University of Jordan, Unpublished M.Sc. thesis

  • Agnon A (1983) An attempted revision of the Neogene stratigraphy in the Dead Sea Valley. Annual Meeting, Israel Geolog Soc

  • Agnon A, Eidelmann A (1991) Lithospheric breakup in 3 dimensions—necking of a work-hardening plastic plate. J Geophys Res 96(b12):20189–20194

    Google Scholar 

  • Aldersons F, Ben-Avraham Z, Hofstetter A, Kissling E, Al-Yazjeen T (2003) Lower-crustal strength under the Dead Sea basin from local earthquake data and rheological modelling. Earth Planet Sci Lett 214:129–142

    Article  Google Scholar 

  • Al-Zoubi A, ten Brink U (2002) Lower crustal flow and the role of shear in basin subsidence: an example from the Dead Sea Basin. Earth Planet Sci Lett 199:67–79

    Article  Google Scholar 

  • Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea: a historical review. Cambridge University Press, Cambridge

    Google Scholar 

  • Amiran DHK, Arieh E, Turcotte T (1994) Earthquakes in Israel and adjacent areas: macroscopic observations since 100 B.C.E. Isr Explor J 44:260–305

    Google Scholar 

  • Atallah MY (1992) Tectonic evolution of the northern Wadi Arava. Tectonophysics 204:17–26

    Article  Google Scholar 

  • Avni Y, Calvo R, Frieslander U (1998). The Zofar Fault—a major intra-rift feature in the Arava rift valley. Geol Surv Isr Curr Res 11:27–32

    Google Scholar 

  • Avni Y, Bartov Y, Garfunkel Z, Ginat H (2001) The Arava formation—a Pliocene sequence in the Arava Valley and its western margin, southern Israel. Isr J Earth Sci 50:101–120

    Article  Google Scholar 

  • Aydin A, Page RA (1984) Diverse Pliocene-Quaternary tectonics in a transform environment, San Francisco Bay region, California. GSAB 95:1303–1317

    Article  Google Scholar 

  • Aydin A, Schultz RA (1990) Effect of mechanical interaction on the development of strike-slip faults with echelon patterns. J Struct Geol 12(1):123–129

    Article  Google Scholar 

  • Barjous MO (1988) Structural study of the area between Petra and Ash Shawbak. University of Jordan; Unpublished M.Sc. thesis

  • Barjous MO (1992) The geology of the Ash Shawbak Area, Map Sheet No. 3151 III. In 1:50.000 Geological Mapping Series, no. 19 in Geological Bulletin, Natural Resources Authority, Geological Directorate, Geological Mapping Division, Amman, Jordan

  • Barjous MO (1995) Petra and Wadi Al Lahyana, No. 3050 I and 3050 IV, In 1:50.000 Geological Mapping Series, Natural Resources Authority, Geological Directorate, Geological Mapping Division, Amman, Jordan

  • Barjous M, Mikbel S (1990) Tectonic evolution of the Gulf of Aqaba Dead Sea transform fault. Tectonophysics 180:49–59

    Article  Google Scholar 

  • Barnes PM, Sutherland R, Davy B, Delteil J (2004) Rapid creation and destruction of sedimentary basins on mature strike-slip faults: an example from the off-shore Alpine Fault, New Zealand. J Struct Geol 23:1727–1739

    Article  Google Scholar 

  • Bartov Y (1974) A structural and paleogeographic study of the central Sinai faults and domes. PhD thesis, Hebrew University, Jerusalem, in Hebrew

  • Bartov Y (1994) The geology of the Arava: explanatory notes to the geological map. Geol Surv Isr 4:1994 (in Hebrew)

    Google Scholar 

  • Bartov Y, Sagy H (2004) Late Pleistocene extension and strike-slip in the Dead Sea Basin. Geol Mag 141:565–572

    Article  Google Scholar 

  • Bartov Y, Steinitz G, Eyal M, Eyal Y (1980) Sinistral movement along the Gulf of Aqaba—its age and relation to the opening of the Red Sea. Nature 285:220–222

    Article  Google Scholar 

  • Bartov Y, Avni Y, Calvo R, Frieslander U (1998). The Zofar Fault—A major intra-rift feature in the Arava rift valley. Geol Surv Isr Curr Res 11:27–32

    Google Scholar 

  • Bartov Y, Sneh A, Fleischer L, Arad V, Rosensaft M (2002) Potential active faults in Israel. Geological Survey of Israel Report GSI/29/2002, p 8

  • Bedrosian P, Maercklin N, Weckmann U, Bartov Y, Ryberg T, Ritter O, DESERT Group (2007) Structure classification from joint interpretation of magnetotelluric and seismic models. Geophys J Int (in press)

  • Bellier O, Sebrier M, Pramumijoyo T, Beaudouin T, Harjono H, Bahr I, Forni O (1997) Paleoseismicity and seismic hazard along the Great Sumatran Fault (Indonesia). J Geodyn 24:169–183

    Article  Google Scholar 

  • Ben-Avraham Z, Zoback MD (1992) Transform-normal extension and asymmetric basins: an alternative to pull-apart models. Geology 20:423–426

    Article  Google Scholar 

  • Bender F (1968) Geologie von Jordanien. Beiträge zur regionalen Geologie der Erde, vol 7. Gebrüder Boerntraeger, Berlin, Stuttgart

  • Bender F (1974) Geological map of the Wadi Araba, Jordan (Scale 1:100.000, 3 sheets). Geological Survey of the Fed Rep of Germany, Hannover

  • Bender F, Futian A, Grieger J, Haddadin M, Heimbach W, Ibrahim H, Jeresat K, Khdeir K, Lenz R, Ruef M, Sunna B, Wiesemann G (1968) Geological map of Jordan, scale 1:250.000—5 sheets. Geological Survey of the Federal Report of Germany, Hannover

  • Blanckenhorn M (1893) Die Strukturlinien Syriens und des Roten Meeres: Richthoven Festschr. Berlin, pp 115–118

  • Byerlee J (1993) Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology 21:303–306

    Article  Google Scholar 

  • Calvo R, Bartov Y (2001) Hazeva Group, southern Israel: new observations, and their implications for its stratigraphy, paleogeography, and tectono-sedimentary regime. Isr J Earth Sci 50:71–99

    Google Scholar 

  • Chester FM, Logan JM (1986) Implications for mechanical properties of brittle faults from observations of Punchbowl fault zone, California. Pure Appl Geophys 12:79–106

    Article  Google Scholar 

  • Chester FM, Evans JP, Biegel RL (1993) Internal structure and weakening mechanisms of faults of the San Andreas Fault system. J Geophys Res 98:771–786

    Google Scholar 

  • Courtillot V, Armijo R, Tapponnier P (1987) The Sinai triple junction revisited. Tectonophysics 141:181–190

    Article  Google Scholar 

  • DESERT Group (2004) The crustal structure of the Dead Sea Transform. Geophys J Int 156:655–681

    Google Scholar 

  • Diabat AA, Atallah M, Salih MR (2004) Paleostress analysis of the Cretaceous rocks in the eastern margin of the Dead Sea Transform, Jordan. J Afr Earth Sci 38:449–460

    Article  Google Scholar 

  • Dooley T, McClay K (1997) Analog modelling of Pull-Apart Basins. AAPG Bull 81(11):1804–1826

    Google Scholar 

  • Dor O, Ben-Zion Y, Rockwell TK, Brune J (2006) Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth Plan Sci Lett 245:642–654

    Article  Google Scholar 

  • Duberet L (1970) Review of structural geology of the Red Sea and surrounding areas. Philos Trans R Soc Lond A 267:107–130

    Article  Google Scholar 

  • Eyal Y (1996) Stress field fluctuations along the Dead Sea rift since the middle Miocene. Tectonics 15:157–170

    Article  Google Scholar 

  • Eyal M, Eyal Y, Bartov Y, Steinitz G (1981) The tectonic development of the western margin of the gulf of Elat (Aqaba) rift. Tectonophysics 80:39–66

    Article  Google Scholar 

  • Eyal Y, Gross MR, Engelder T, Becker A (2001) Joint development during fluctuations of regional stress field in southern Israel. J Struct Geol 23:279–296

    Article  Google Scholar 

  • Faulkner DR, Lewis AC, Rutter EH (2003) On the internal structure and mechanics of large strike-slip zones: field observations of the Carboneras fault in southeast Spain. Tectonophysics 367:235–251

    Article  Google Scholar 

  • Finzi Y (2004) Current deformation in the southern Dead Sea Transform: radar interferometry measurements and tectonic implication analysis. MSc thesis, Hebrew University, Jerusalem, Inst of Earth Sciences

  • Freund R (1961) Distribution of lower Turonian ammonites in Israel and the neighbouring countries. Bull Res Counc Isr G10:79–100

    Google Scholar 

  • Freund R, Zak I, Garfunkel Z (1968) Age and rate of movement along the Dead Sea Rift. Nature 220:253–255

    Article  Google Scholar 

  • Freund R, Garfunkel Z, Zak I, Goldberg M, Weissbrod T, Derin B (1970) The shear along the Dead Sea rift. Phil Trans Roy Soc Ser A: Math Phys Sci 267(1181):107–130

    Article  Google Scholar 

  • Frieslander U (2000) The structure of the Dead Sea Transform emphasizing the Arava, using new geophysical data. Ph.D. thesis, Hebrew University, Jerusalem (in Hebrew)

  • Förster A, Förster HJ, Masarweh R, Masri A, Tarawneh K, DESERT Group (2007) The terrestrial heat flow of the Arabian shield in Jordan. Int J Earth Sci (in press). doi:10.1016/j.seaes.2006.09.002

  • Gardosh M, Kashai E, Salhov S, Shulman H, Tannenbaum E (1997) Hydrocarbon exploration in the southern Dead Sea area. In: Niemi TN, Ben-Avraham Z, Gat J (eds) The Dead Sea. Oxford University Press, Oxford, pp 57–72

  • Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80:81–108

    Article  Google Scholar 

  • Garfunkel Z (1997) The history and formation of the Dead Sea basin. In: Niemi TN, Ben-Avraham Z, Gat J (eds) The Dead Sea. Oxford University Press, Oxford, pp 36–56

  • Garfunkel Z, Zak I, Freund R. (1981) Active faulting in the Dead Sea Rift. Tectonophysics 80:1–26

    Article  Google Scholar 

  • Ginat H, Enzel Y, Avni Y (1998) Translocated Plio-Pleistocene drainage systems along the Arava Fault of the Dead Sea transform. Tectonophysics 284:151–160

    Article  Google Scholar 

  • Götze HJ, El-Kelani R, Schmidt S, Rybakov M, Förster H.J, Ebbing J, DESERT Group (2006) Integrated 3-D density modelling and segmentation of the Dead Sea Transform. Int J Earth Sci (in press). doi:10.1007/s00531-006-0095-5

  • Haberland C, Agnon A, El-Kelani R, Maercklin N, Qabbani I, Rümpker G, Ryberg T. Scherbaum F, Weber M (2003) Modelling of seismic guided waves at the Dead Sea Transform. J Geophys Res 108:2342. doi:10.1029/2002JB002309

    Google Scholar 

  • Haberland Ch, Maercklin N, Kesten D, Ryberg T, Janssen Ch, Agnon A, Weber M, Schulze A, Qabbani I, El-Kelani R (2007) Shallow architecture of the Wadi Araba Fault (Dead Sea Transform) from high-resolution seismic investigations. Tectonophysics (in press). doi:10.1016/j.tecto.2006.12.006

  • Hofstetter A, Thio HK, Shamir G (2003) Source mechanism of the 22/11/1995 Gulf of Aqaba earthquake and its aftershock sequence. J Seismol 7:99–114

    Article  Google Scholar 

  • Hsiao LY, Graham SA, Tilander N (2004) Seismic reflection imaging of a major strike-slip fault zone in a rift system: paleogene structure and evolution of the Tan-Lu fault system, Liadong Bay, Bohai, offshore China. AAPG Bull 88:71–97

    Article  Google Scholar 

  • Ibrahim KMK (1991) The geology of the Wadi Rahma, Map Sheet no. 3049 IV. In 1:50.000 Geological Mapping Series, no. 15 in Geological Bulletin, Natural Resources Authority, Geological Directorate, Geological Mapping Division, Amman, Jordan

  • Janssen C, Romer RL, Hoffmann-Rothe A, Kesten D, Al-Zubi H, DESERT Group (2004) The Dead Sea Transform: evidences for a strong fault? J Geol 112:561–575

    Article  Google Scholar 

  • Janssen C, Romer R L, Hoffmann-Rothe A, Mingram B, Dulski P, Möller P, Al-Zubi H, DESERT Group (2005) The role of fluids in faulting deformation a case study from the Dead Sea Transform (Jordan). Int J Earth Sci 94:243–255. doi:10.1007/s00531-004-0461-0

  • Janssen C, Bohnhoff M, Hoffmann-Rothe A, Wetzel U, Matar A, Khatib M, DESERT Group (2007) Different styles of faulting deformation along the Dead Sea Transform. EPSL (in press)

  • Joffe S, Garfunkel Z (1987) The plate kinematics of the circum Red Sea—a re-evaluation. Tectonophysics 141:5–22

    Article  Google Scholar 

  • Kesten D (2004) Structural observations at the Southern Dead Sea transform from seismic reflection data and ASTER satellite images. Ph.D. thesis, University of Potsdam, Potsdam, Germany

  • King G, Klinger Y, Bowman D, Tapponnier P (2005) Slip-partitioned surface breaks for the M-w 7.8 2001 Kokoxili earthquake, China. Bull Seism Soc Am 95:731–738

    Article  Google Scholar 

  • Klemperer SL, Ryan PD, Snyder DB (1991) A deep seismic reflection transect across the Irish Caledonides. J Geol Soc Lond 148:149–164

    Article  Google Scholar 

  • Klinger Y, Avouac J, Dorbath L, Karaki NA, Tisnerat N (2000a) Seismic behaviour of the Dead Sea fault along Araba valley, Jordan. Geophys J Int 142:769–782

    Article  Google Scholar 

  • Klinger Y, Avouac J, Karaki NA, Dorbath L, Bourles D, Reyss JL (2000b) Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan). Geophys J Int 142:755–768

    Article  Google Scholar 

  • Koulakov I, Sobolev S (2005) Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophys J Int. doi:10.1111/j.1365-246X.2005.02791

  • Larsen BD, Ben-Avraham Z, Shulman H (2002) Fault and salt tectonics in the southern Dead Sea basin. Tectonophysics 346:71–90

    Article  Google Scholar 

  • LeBeon, M, Klinger Y, Agnon A, Dorbath L, Baer G, Mériaux A-S, Ruegg J-C, Charade O, Finkel R, Ryerson F (2006) Geodetic versus geologic slip rate along the Dead Sea Fault. Seism Soc Am Ann Meet San Francisco, USA April, pp 18–22

  • Lyakhovsky V, Ben-Zion Y, Agnon A (2001) Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere. J Geophys Res 106:4103–4120

    Article  Google Scholar 

  • Maercklin N (2004) Seismic structure of the Arava Fault, Dead Sea Transform. PhD thesis, University Potsdam, Potsdam, Germany

  • Maercklin N, Haberland Ch, Ryberg T, Weber M, Bartov Y, DESERT Group (2004) Imaging the Dead Sea Transform with scattered seismic waves. Geophys J Int 158:179–186

    Article  Google Scholar 

  • Maercklin N, Bedrosian PA, Haberland C, Ritter O, Ryberg T, Weber M, Weckmann U (2005) Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform. Geophys Res Lett 32:L15303. doi:10.1029/2005GL022724

  • Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A (2005) GPS evidence for northward motion of the Sinai Block: Implications for E. Mediterranean tectonics. Earth Planet Sci Lett 238:217–224

    Article  Google Scholar 

  • Marco S, Stein M, Agnon A (1996) Long-term earthquake clustering: a 50.000 year paleoseismic record in the Dead Sea Graben. J Geophys Res 101:6179–6191

    Article  Google Scholar 

  • Marco S, Rockwell TK, Heimann A, Frieslander U, Agnon A (2005) Late Holocene activity of the Dead Sea Transform revealed in 3D palaeoseismic trenches on the Jordan Gorge segment. Earth Planet Sci Lett 234:189–205

    Article  Google Scholar 

  • Mart Y (1991) The Dead Sea Rift: from continental rift to incipient ocean. Tectonophysics 197:155–179

    Article  Google Scholar 

  • Matmon A, Shaked Y, Porat N, Enzel Y, Finkel R, Boaretto E, Agnon A (2005) Landscape development in an hyperarid sandstone environment along the margins of the Dead Sea fault: Implications from dated rock falls. Earth Planet Sci Lett 240:803–817

    Article  Google Scholar 

  • McBride JH (1994) Structure of a continental strike-slip fault from deep seismic reflection: Walls Boundary fault, northern British Caledonides. J Geophys Res 99:23985–24005

    Article  Google Scholar 

  • Mechie J, Abu-Ayyash K, Ben-Avraham Z, El-Kelani R, Mohsen A, Rümpker G, Saul J, Weber M (2005) Crustal shear velocity structure across the Dead Sea Transform from two-dimensional modelling of DESERT project explosion seismic data. Geophys J Int 160:910–924. doi:10.1111/j.1365-246X.2005.02526

    Google Scholar 

  • Migowski C, Agnon A, Bookman R, Negendank JFW, Stein M (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustine sediments. Earth Planet Sci Lett 222:301–314

    Article  Google Scholar 

  • Mohsen A, Hofstetter R, Bock G, Kind R, Weber M, Wylegalla K, Rümpker G, DESERT Group (2005) A receiver function study across the Dead Sea Transform. Geophys J Int 160:948–960. doi:10.1111/j.1365-246X.2005.02534

    Google Scholar 

  • Mount VS, Suppe J (1992) Present-day stress orientations adjacent to active strike-slip faults: California and Sumatra. J Geophys Res 97(B8):11995–12013

    Article  Google Scholar 

  • Petrunin A, Sobolev SV (2006) What controls the thickness of sediments and lithospheric deformation at a pull-apart basin. Geology 34:389–392

    Article  Google Scholar 

  • Picard L (1943) Structure and evolution of Palestine. Bull Geol Dept Hebrew Univ 4:1–134

    Google Scholar 

  • Quennell AM (1958) The structural and geomorphic evolution of the Dead Sea Rift. Q J Geol Soc Lond 114:1–24

    Article  Google Scholar 

  • Rabb’a I (1991) Al Quwayra, 3051 II, 1:50,000. Geological map, Natural Resources Authority, Geology Directorate, Amman, Jordan

  • Rabb’a I (1993) Investigation and Processing of Copper Ores from the Wadi Araba-Jordan. M.Phil. thesis, University of Wales, Cardiff College, Division of Materials and Minerals Engineering, UK

  • Reilinger R and 25 co-authors (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interaction. J Geophys Res 111:B0541. doi:10.1029/2005JB004051

  • Ritter O, Ryberg T, Weckmann U, Hoffmann-Rothe A, Abueladas A, Garfunkel Z, DESERT Research Group (2003) Geophysical images of the Dead Sea Transform in Jordan reveal an impermeable barrier for fluid flow. Geophys Res Lett 30. doi:10.1029/2003GL017541

  • Rohr KM, Dietrich JR (1992) Strike-slip tectonics and development of the Tertiary Quuen Charlotte Basin, offshore western Canada: evidence from seismic reflection data. Basin Res 4:1–19

    Article  Google Scholar 

  • Rotstein Y, Bartov Y, Frieslander U (1992) Evidence for local shifting of the main fault and changes in the structural setting, Kinarot basin, Dead Sea transform. Geology 20:251–254

    Article  Google Scholar 

  • Rümpker G, Ryberg T, Bock G, DESERT Seismology Group (2003) Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy. Nature 425:497–501

    Article  Google Scholar 

  • Ryberg T, Rümpker G, Haberland C, Stromeyer D, Weber M (2005) Simultaneous inversion of shear waves splitting observations from seismic arrays. J Geophys Res 110:B03301. doi:10.1029/2004JB003303

  • Ryberg T, Weber M, Garfunkel Z, Bartov Y (2007) The shallow velocity structure across the Dead Sea Transform fault, Arava Valley, from seismic data. J Geophys Res (in press)

  • Sagy A, Reches Z, Agnon A (2003) Hierarchic three-dimensional structure and slip partitioning in the western Dead Sea pull-apart. Tectonics 22 (1). doi:10.1029/2001TC001323

  • Salamon A, Hofstetter A, Garfunkel Z, Ron H (2003) Seismotectonics of the Sinai subplate—the Eastern Mediterranean region. Geophys J Int 155:149–173

    Article  Google Scholar 

  • Scholz CH (2000) Evidence for a strong San Andreas Fault. Geology 28:163–166

    Article  Google Scholar 

  • Schulz SE, Evans JP (1998) Spatial variability in microscopic deformation and composition of the Punchbowl fault, southern California: implications for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics 295:223–244

    Article  Google Scholar 

  • Shamir G, Eyal Y, Bruner I (2005) Localized versus distributed shear in transform plate boundary zones: The case of the Dead Sea Transform in the Jericho Valley. G3 6. doi: 10.1029/2004GC000751

  • Shtivelman V, Frieslander U, Zilberman E, Amit R (1998) Mapping shallow faults at the Evrona playa site using high-resolution reflection method. Geophysics 63(4):1257–1264

    Article  Google Scholar 

  • Sibson RH (1992) Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 192:283–293

    Article  Google Scholar 

  • Sneh A, Ibrahim K, Bartov Y, Rabb’a I., Weissbrod T, Tarawneh K, Rosensaft M (1998) Geological Map of the Dead Sea Rift along Wadi Araba, 1:250.000 in: Compilation of Earth Science Data, Dead Sea-Wadi Araba Geological Survey of Israel and Natural Resources Authority, Jordan

  • Sobolev SV, Petrunin A, Garfunkel Z, Babeyko AY, DESERT Group (2005) Thermo-Mechanical Model of the Dead Sea Transform. Earth Planet Sci Lett 238:78–95

    Article  Google Scholar 

  • Steinitz G, Bartov Y (1991) Miocene-Pleistocene history of the Dead Sea segment of the Rift in the light of K–Ar ages of basalts. Isr J Earth Sci 40:199–208

    Google Scholar 

  • Steinitz G, Bartov Y, Hunziker JC (1978) K–Ar age determinations of some Miocene-Pliocene basalts in Israel: their significance to the tectonics of the Rift Valley. Geol Mag 115(5):329–340

    Article  Google Scholar 

  • Stern TA, McBride JH (1998) Seismic exploration of continental strike-slip zones. Tectonophysics 286:63–78

    Article  Google Scholar 

  • ten Brink US, Ben-Avraham Z (1989) The anatomy of a pull-apart basin: seismic reflection observations of the Dead Sea Basin. Tectonics 8:333–350

    Article  Google Scholar 

  • ten Brink US, Katzman R, Lin J (1996) Three-dimensional models of deformation near strike-slip faults. J Geophys Res 101(b7):16205–16220

    Article  Google Scholar 

  • ten Brink US, Rybakov M, Al-Zoubi AS, Hassouneh M, Frieslander U, Batayneh AT, Goldschmidt V, Daoud MN, Rotstein Y, Hall JK (1999) Anatomy of the Dead Sea transform: does it reflect continuous changes in plate motion? Geology 27:887–890

    Article  Google Scholar 

  • van Eck T, Hofstetter A (1990) Fault geometry and spatial clustering of microearthquakes along the Dead Sea—Jordan rift fault zone. Tectonophysics 180:15–27

    Article  Google Scholar 

  • Wdowinsk S, Bock Y, Baer G, Prawirodirdjo L, Bechor N, Naaman, S, Knafo R, Forrai Y, Melzer Y (2004) GPS measurements of current crustal movements along the Dead Sea Fault. J Geophys Res 109:B05403. doi:10.1029/2003JB002640

  • Wood RA, Pettinga JR, Bannister S, Lamarche G, McMorran TJ (1994) Structure of the Hammer strike-slip basin, Hope fault, New Zealand. Geol Soc Am Bull 106:1459–1473

    Article  Google Scholar 

  • Wurtzburger SU (1967) The occurrence of Sulphides in the Timna Massive and Secondary Copper Minerals in the Timna Copper deposit, Negev. MSC thesis, University of London

  • Zaineldeen U (2000) Tectonic evolution of the Wadi Araba segment of the Dead Sea Rift, south-western Jordan. PhD thesis, University of Gent, Belgium

  • Zanchi A, Crosta GB, Darkal AN (2002) Paleostress analyses in NW Syria: constraints on the Cenozoic evolution of the northwestern margin of the Arabian plate. Tectonophysics 357:255–278

    Article  Google Scholar 

  • Zak I, Freund R (1966) Recent strike slip movements along the Dead Sea rift. Isr J Earth Sci 15:33–34

    Google Scholar 

  • Zoback MD (2000) Strength of the San Andreas Fault. Nature 405:31–33

    Article  Google Scholar 

  • Zoback MD, Zoback ML, Mount VS, Suppe J, Eaton JP, Healy JH, Oppenheiner D, Reasenberg P, Raleigh CB, Wong IG, Wentworth OS (1987) New evidence for the state of stress of the San Andreas Fault System. Science 238:1105–1111

    Article  Google Scholar 

  • Zoback ML, Zoback MD (1989). Tectonic stress field of the continental United States. In: Pakiser LC, Mooney WD (eds) Geophysical Framework of the Continental United States. Geol Soc Am Mem 172:523–539

Download references

Acknowledgments

We thank J. Kley and an anonymous reviewer for comments on an earlier version of this manuscript. We thank the National Ministry of Infrastructure of Israel, the Natural Resources Authority (NRA) of Jordan and the An-Najah National University in Nablus, Palestine, for their support. We thank our contractors the Geophysical Institute of Israel, the Site Group (Jordan) and the Chemical and Mining Industries (Jordan) for their excellent work under difficult logistic conditions. The instruments for the fieldwork were provided by the Geophysical Instrument Pool of the GeoForschungsZentrum Potsdam (GFZ). The experiments were funded by the Deutsche Forschungsgemeinschaft, the GFZ and the Minerva Dead Sea Research Centre.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesten, D., Weber, M., Haberland, C. et al. Combining satellite and seismic images to analyse the shallow structure of the Dead Sea Transform near the DESERT transect. Int J Earth Sci (Geol Rundsch) 97, 153–169 (2008). https://doi.org/10.1007/s00531-006-0168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0168-5

Keywords

Navigation