Skip to main content
Log in

Modelling the Removal of Gaseous Pollutants and Particulate Matters from the Atmosphere of a City by Rain: Effect of Cloud Density

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this paper, an original nonlinear mathematical model for the removal of gaseous pollutants and particulate matters from the atmosphere of an industrial city by rain is proposed and analyzed. It is assumed that five interacting phases in the atmosphere of the city exist, i.e., cloud droplets phase, raindrops phase, gaseous pollutants phase, particulate matters phase, and the phase of absorbed gaseous pollutants in raindrops. It is assumed further that these phases undergo nonlinear interactions in the atmosphere, while gaseous pollutant interacts with cloud droplets as well as with raindrops but particulate matters interact only with raindrops. The gravitational settling and reversible reaction processes have also been considered appropriately in the model. By analyzing the model, it is shown that both the gaseous pollutants and particulate matters may be removed from the atmosphere under certain conditions, provided the rates of formation of cloud droplets and raindrops are sufficiently large. It is noted that under unfavorable atmospheric conditions, rain does not occur and pollutants are not removed from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blando, J. D., & Turpin, B. J. (2000). Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment, 34, 1623–1632.

    Article  CAS  Google Scholar 

  2. Davies, T. D. (1976). Precipitation scavenging of SO2 in an industrial area. Atmospheric Environment, 10, 879–890.

    Article  CAS  Google Scholar 

  3. Davies, T. D. (1979). Dissolved SO2 and sulphate in urban and rural precipitation. Atmospheric Environment, 13, 1275–1285.

    Article  CAS  Google Scholar 

  4. Davies, T. D. (1983). Sulfur dioxide precipitation scavenging. Atmospheric Environment, 17, 797–805.

    Article  CAS  Google Scholar 

  5. Fisher, B. E. A. (1982). The transport and removal of sulfur dioxide in rain system. Atmospheric Environment, 16, 769–778.

    Google Scholar 

  6. Freedman, H. I., & So, J. W. H. (1985). Global stability and persistence of simple food chains. Mathematical Biosciences, 7, 69–86.

    Article  Google Scholar 

  7. Hales, J. M. (1972). Fundamentals of the theory of gas scavenging by rain. Atmospheric Environment, 6, 635–659.

    Article  CAS  Google Scholar 

  8. Kumar, S. (1985). An Eulerian model for scavenging of pollutants by rain drops. Atmospheric Environment, 19, 769–778.

    Article  CAS  Google Scholar 

  9. Moore, K. F., Sherman, D. E., Reilly, J. E., & Collett, J. L. (2004). Drop size dependent chemical composition in clouds and fogs. Part 1, observations. Atmospheric Environment, 38(10), 1389–1402.

    Article  CAS  Google Scholar 

  10. Moore, K. F., Sherman, D. E., Reilly, J. E., & Collett, J. L. (2004). Drop size dependent chemical composition in clouds and fogs. Part II. Atmospheric Environment, 38(10), 1403–1415.

    Article  CAS  Google Scholar 

  11. Naresh, R. (1999). Modelling the dispersion of air pollutant from a time dependent point source: effect of precipitation scavenging. Journal of MACT, 32, 77–91.

    Google Scholar 

  12. Naresh, R. (2003). Qualitative analysis of a nonlinear model for removal of air pollutants. International Journal of Nonlinear Sciences and Numerical Simulation, 4(4), 379–385.

    Google Scholar 

  13. Pandey, J., Agrawal, M., Khanam, M., Narayanan, D., & Rao, D. N. (1992). Air pollution concentration in Varanasi, India. Atmospheric Environment, 26B, 91–98.

    CAS  Google Scholar 

  14. Pandis, S. N., & Seinfeld, J. H. (1990). On the interaction between equilibration process and wet or dry deposition. Atmospheric Environment, 24A(9), 2316–2327.

    Google Scholar 

  15. Pillai, A., Naik, M. S., Momin, G., Rao, P., Safari, P., Ali, K., Rodhe, H., & Granat, L. (2001). Studies of wet deposition and dust fall at Pune, India. Water, Air and Soil Pollution, 130, 475–480.

    Article  Google Scholar 

  16. Prakash Rao, P. S., Khemani, L. T., Momin, G. A., Safai, P. D., & Pillai, A. G. (1992). Measurement of wet and dry deposition at an urban location in India. Atmospheric Environment, 26B, 73–78.

    Google Scholar 

  17. Sharma, V. P., Arora, H. C., & Gupta, R. K. (1983). Atmospheric pollution studies at Kanpur-suspended particulate matter. Atmospheric Environment, 17, 1307–1314.

    Article  CAS  Google Scholar 

  18. Shukla, J. B., Agrawal, A., Dubey, B., & Singh, P. (2001). Existence and survival of two competing species in a polluted environment: A mathematical model. Journal of Biological Systems, 9(2), 89–103.

    Article  Google Scholar 

  19. Shukla, J. B., Agarwal, M., & Naresh, R. (1992). An ecological type nonlinear model for removal mechanism of air pollutants. In S. E. Schwartz & W. G. N. Slinn (Eds.), Precipitation scavenging and atmosphere surface exchange, vol. 3 (pp. 1255–1263). Richland, Washington, U.S.A.: Hemisphere Publishing Corporation.

    Google Scholar 

  20. Shukla, J. B., Agrawal, A. K., Singh, P., & Dubey, B. (2003). Modelling the effect of primary and secondary toxicants on renewable resources. Natural Resource Modelling, 16, 1–22.

    Google Scholar 

  21. Shukla, J. B., & Dubey, B. (1997). Modelling the depletion and conservation of forestry resource: Effect of population and pollution. Journal of Mathematical Biology, 36, 71–94.

    Article  Google Scholar 

  22. Shukla, J. B., Nallaswamy, R., Verma, S., & Seinfeld, J. H. (1982). Reversible absorption of a pollutant from an area source in a stagnant fog layer. Atmospheric Environment, 16, 1035–1037.

    Article  CAS  Google Scholar 

  23. Slinn, W. G. N. (1974). The redistribution of gas plume caused by reversible washout. Atmospheric Environment, 8, 233–239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and reviewers for the constructive suggestions which helped us in revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Naresh.

Appendices

Appendix A

Proof of the Theorem 1

To establish the local asymptotic stability of E *, let us consider the following positive definite function,

$$V = \frac{1}{2}{\left( {k_{0} C^{{\text{2}}}_{{{\text{d}}1}} + k_{1} C^{{\text{2}}}_{{{\text{r1}}}} + k_{2} C^{2}_{1} + k_{3} C^{{\text{2}}}_{{{\text{a1}}}} + k_{4} C^{2}_{{{\text{p1}}}} } \right)}$$
(A1)

where C d1, C r1, C 1, C a1, and C p1 are small perturbations from E*, i.e.,

$$ C_{{\text{d}}} = C^{ * }_{{\text{d}}} + C_{{{\text{d1}}}} {\text{,}}\,\,C_{{\text{r}}} = C^{ * }_{{\text{r}}} + C_{{{\text{r1}}}} ,\,\,C = C^{ * } + C_{1} ,\,\,\,C_{{\text{a}}} = C^{ * }_{{\text{a}}} + C_{{{\text{a1}}}} ,\,\,C_{{\text{p}}} = C^{ * }_{{\text{p}}} + C_{{{\text{p1}}}} $$

Differentiating (A1) w.r.t ‘t’ and using the linearized system of Equations (1)–(5) corresponding to E *, we get

$$\begin{array}{*{20}l} {{\frac{{dV}}{{dt}} = } \hfill} & {{ - k_{0} {\left( {\lambda _{0} + \lambda _{1} C^{ * } } \right)}C^{2}_{{{\text{d}}1}} - k_{1} \frac{{r\,C^{ * }_{{\text{d}}} }}{{C^{ * }_{{\text{r}}} }}C^{{\text{2}}}_{{{\text{r1}}}} - k_{2} {\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)}C^{2}_{1} - k_{3} {\left( {k + \nu C^{ * }_{{\text{r}}} } \right)}C^{{\text{2}}}_{{{\text{a1}}}} } \hfill} \\ {{} \hfill} & {{ - k4{\left( {\delta _{{\text{p}}} + \delta _{{{\text{p1}}}} C^{ * }_{{\text{r}}} } \right)}C^{{\text{2}}}_{{{\text{p1}}}} + k_{1} rC_{{{\text{d1}}}} C_{{{\text{r1}}}} - k_{0} \lambda _{1} C^{ * }_{{\text{d}}} C_{{{\text{d1}}}} C_{1} - k_{1} r_{1} C^{ * }_{{\text{r}}} C_{{{\text{r1}}}} C_{1} } \hfill} \\ {{} \hfill} & {{ - k_{2} {\left( {\alpha C^{ * } - \pi \nu C^{ * }_{{\text{a}}} } \right)}C_{{{\text{r1}}}} C_{1} + k_{3} {\left( {\alpha C^{ * } - \nu C^{ * }_{{\text{a}}} } \right)}C_{{{\text{r1}}}} C_{{{\text{a1}}}} - k_{1} r_{2} C^{ * }_{{\text{r}}} C_{{{\text{r1}}}} C_{{{\text{p}}1}} } \hfill} \\ {{} \hfill} & {{ - k_{4} \delta _{{{\text{p1}}}} C^{ * }_{{\text{p}}} C_{{{\text{r1}}}} C_{{{\text{p1}}}} + k2{\left( {\theta k + \pi \nu C^{ * }_{{\text{r}}} } \right)}C_{1} C_{{{\text{a1}}}} + k_{3} \alpha C^{ * }_{{\text{r}}} C_{1} C_{{{\text{a1}}}} } \hfill} \\ \end{array} $$
(A2)

For \( \frac{{dV}} {{dt}} \) to be negative definite, the following inequalities must be satisfied in (A2),

$$ k_{1} r^{2} < \frac{1} {3}k_{0} \frac{{rC^{ * }_{{\text{d}}} }} {{C^{ * }_{{\text{r}}} }}{\left( {\lambda _{0} + \lambda _{1} C^{ * } } \right)} $$
$$ k_{0} {\left( {\lambda _{1} C^{ * }_{{\text{d}}} } \right)}^{2} < \frac{2} {5}k_{2} {\left( {\lambda _{0} + \lambda _{1} C^{ * } } \right)}{\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)} $$
$$ k_{1} {\left( {r_{1} C^{ * }_{{\text{r}}} } \right)}^{2} < \frac{2} {{15}}k_{2} \frac{{rC^{ * }_{{\text{d}}} }} {{C^{ * }_{{\text{r}}} }}{\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)} $$
$$ k_{2} {\left( {\alpha C^{ * } - \pi \nu C_{{\text{a}}}^{*} } \right)}^{2} < \frac{2} {{15}}k_{1} \frac{{rC^{ * }_{{\text{d}}} }} {{C^{ * }_{{\text{r}}} }}{\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)} $$
$$k_{3} {\left( {\alpha C^{ * } - \nu C^{ * }_{{\text{a}}} } \right)}^{2} < \frac{2}{9}k_{1} \frac{{rC^{ * }_{{\text{d}}} }}{{C^{ * }_{{\text{r}}} }}{\left( {k + \nu C^{ * }_{{\text{r}}} } \right)}$$
$$ k_{1} {\left( {r_{2} C^{ * }_{{\text{r}}} } \right)}^{2} < \frac{1} {3}k_{4} \frac{{rC^{ * }_{{\text{d}}} }} {{C^{ * }_{{\text{r}}} }}{\left( {\delta _{{\text{p}}} + \delta _{{{\text{p1}}}} C^{ * }_{{\text{r}}} } \right)} $$
$$ k_{4} {\left( {\delta _{{{\text{p1}}}} C^{ * }_{{\text{p}}} } \right)}^{2} < \frac{1} {3}k_{1} \frac{{rC^{ * }_{{\text{d}}} }} {{C^{ * }_{{\text{r}}} }}{\left( {\delta _{{\text{p}}} + \delta _{{{\text{p1}}}} C^{ * }_{{\text{r}}} } \right)} $$
$$ k_{2} {\left( {\theta k + \pi \nu C^{ * }_{{\text{r}}} } \right)}^{2} < \frac{4} {{15}}k_{3} {\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)}{\left( {k + \nu C^{ * }_{{\text{r}}} } \right)} $$
$$ k_{3} {\left( {\alpha C_{{\text{r}}}^{*} } \right)}^{2} < \frac{4} {{15}}k_{2} {\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)}{\left( {k + \nu C^{ * }_{{\text{r}}} } \right)} $$

Now choosing the constants k 1 = 1, \( k_{0} > \frac{{3rC^{ * }_{{\text{r}}} }} {{C^{ * }_{{\text{d}}} {\left( {\lambda _{0} + \lambda _{1} C^{ * } } \right)}}} \), the above inequalities reduce to the following forms after some simplifications,

$$\frac{{15C^{*}_{r} }}{{2{\left( {\delta + \alpha C^{{\text{*}}}_{{\text{r}}} } \right)}}}\max {\left\{ {\frac{{r\lambda ^{2}_{1} C^{{\text{*}}}_{{\text{d}}} }}{{{\left( {\lambda _{0} + \lambda _{1} C^{*} } \right)}^{2} }},\frac{{{\left( {r_{1} C^{{\text{*}}}_{{\text{r}}} } \right)}^{2} }}{{rC^{{\text{*}}}_{{\text{d}}} }}} \right\}} < k_{2} < \frac{2}{{15}}\frac{{r{\left( {\delta + \alpha C^{{\text{*}}}_{{\text{r}}} } \right)}}}{{C^{{\text{*}}}_{{\text{r}}} {\left( {\alpha C^{*} - \pi \nu C^{{\text{*}}}_{{\text{a}}} } \right)}^{2} }}$$
(A3)
$$ 3r_{2} \delta _{{{\text{p1}}}} C^{ * }_{{\text{r}}} C^{ * }_{{\text{p}}} < \delta _{{\text{p}}} r_{0} $$
(A4)
$$ {\left( {\theta k + \pi \nu C^{ * }_{{\text{r}}} } \right)}^{2} k_{2} < \frac{8}{{15}}{\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)}{\left( {k + C^{ * }_{{\text{r}}} } \right)}^{2} \min {\left\{ {\frac{2}{{15}}\frac{{{\left( {\delta + \alpha C^{ * }_{{\text{r}}} } \right)}}}{{{\left( {\alpha C^{ * }_{{\text{r}}} } \right)}^{2} }}k_{2} ,\frac{1}{9}\frac{{rC^{ * }_{{\text{d}}} }}{{{\left( {\alpha C^{ * } - \nu C^{ * }_{{\text{a}}} } \right)}^{2} }}} \right\}}$$
(A5)

where the coefficient k 2 is so chosen that the inequalities (A3) and (A5) are satisfied.

Under these conditions, \( \frac{{dV}} {{dt}} \) would be negative definite showing that V is Lyapunov’s function and hence the theorem.

Appendix B

Proof of the Theorem 2

To establish nonlinear asymptotic stability of E* we take the following positive definite function about E*,

$$U = \frac{1}{2}{\left[ {m_{0} {\left( {C_{{\text{d}}} - C^{*}_{{\text{d}}} } \right)}^{2} + m_{1} {\left( {C_{{\text{r}}} - C^{*}_{{\text{r}}} } \right)}^{2} + m_{2} {\left( {C - C^{*} } \right)}^{2} + m_{3} {\left( {C_{{\text{a}}} - C^{*}_{{\text{a}}} } \right)} + m_{4} {\left( {C_{{\text{p}}} - C^{*}_{{\text{p}}} } \right)}^{2} } \right]}$$
(B1)

On differentiation of (B1) and using Equations (1)–(5), we get

$$ \begin{array}{*{20}c} {\frac{{dU}} {{dt}} = {\left( {C_{{\text{d}}} - C^{ * }_{{\text{d}}} } \right)}{\left( {\lambda - \lambda _{0} C_{{\text{d}}} - \lambda _{1} C_{{\text{d}}} C} \right)} + m_{1} {\left( {C_{{\text{r}}} - C^{ * }_{{\text{r}}} } \right)}{\left( {rC_{{\text{d}}} - r_{0} C_{{\text{r}}} - r_{1} CC_{{\text{r}}} - r_{2} C_{{\text{p}}} C_{{\text{r}}} } \right)}} \\ { + m_{2} {\left( {C - C^{ * } } \right)}{\left( {Q - \delta C - \alpha CC_{{\text{r}}} + \theta kC_{{\text{a}}} + \pi \nu C_{{\text{r}}} C_{{\text{a}}} } \right)}} \\ { + m_{3} {\left( {C_{{\text{a}}} - C^{ * }_{{\text{a}}} } \right)}{\left( {\alpha CC_{{\text{r}}} - kC_{{\text{a}}} - \nu C_{{\text{r}}} C_{{\text{a}}} } \right)} + m_{4} {\left( {C_{{\text{p}}} - C^{ * }_{{\text{p}}} } \right)}{\left( {Q_{{\text{p}}} - \delta _{{\text{p}}} C_{{\text{p}}} - \delta _{{{\text{p1}}}} C_{{\text{p}}} C_{{\text{r}}} } \right)}} \\ \end{array} $$
(B2)

After some algebraic manipulations, the above equation can be written as

$$\begin{array}{*{20}l} {\frac{{dU}}{{dt}} = - m{\left( {r_{1} C + r_{2} C_{{\text{p}}} } \right)}{\left( {C_{{\text{r}}} - C^{ * }_{{\text{r}}} } \right)}^{2} - m_{2} \alpha C_{{\text{r}}} {\left( {C - C^{ * } } \right)}^{2} - m_{4} \delta _{{{\text{p1}}}} C_{{\text{r}}} {\left( {C_{{\text{p}}} - C^{ * }_{{\text{p}}} } \right)}^{2} } \\{{} - m_{0} {\left( {\lambda _{0} + \lambda _{1} C^{ * } } \right)}{\left( {C_{{\text{d}}} - C^{ * }_{{\text{d}}} } \right)}^{2} - m_{1} r_{0} {\left( {C_{r} - C^{ * }_{{\text{r}}} } \right)}^{2} - m_{2} \delta {\left( {C - C^{ * } } \right)}^{2} - m_{3} {\left( {k + \nu C^{ * }_{{\text{r}}} } \right)}{\left( {C_{{\text{a}}} - C^{ * }_{{\text{a}}} } \right)}^{2} } \\{{} - m_{4} \delta _{{\text{p}}} {\left( {C_{{\text{p}}} - C^{ * }_{{\text{p}}} } \right)}^{2} - m_{0} \lambda _{1} C^{ * }_{{\text{d}}} {\left( {C_{{\text{d}}} - C^{ * }_{{\text{d}}} } \right)}{\left( {C - C^{ * } } \right)} + m_{1} r{\left( {C_{{\text{d}}} - C^{ * }_{{\text{d}}} } \right)}{\left( {C_{{\text{r}}} - C^{ * }_{{\text{r}}} } \right)}} \\{{} - m_{1} r_{1} C^{ * }_{{\text{r}}} {\left( {C_{{\text{r}}} - C^{ * }_{{\text{r}}} } \right)}{\left( {C - C^{ * } } \right)} - m_{2} {\left( {\alpha C^{ * } - \pi \nu C^{ * }_{{\text{a}}} } \right)}{\left( {C_{{\text{r}}} - C^{ * }_{{\text{r}}} } \right)}{\left( {C - C^{ * } } \right)}} \\{{} - m_{1} r_{2} C^{ * }_{r} {\left( {C_{{\text{r}}} - C^{ * }_{{\text{r}}} } \right)}{\left( {C_{{\text{p}}} - C^{ * }_{{\text{p}}} } \right)} - m_{4} \delta _{{{\text{p1}}}} C^{ * }_{{\text{p}}} {\left( {C_{{\text{r}}} - C^{ * }_{{\text{r}}} } \right)}{\left( {C_{{\text{p}}} - C^{ * }_{{\text{p}}} } \right)}} \\{{} + m_{3} {\left( {\alpha C^{ * } - \nu C^{ * }_{{\text{a}}} } \right)}{\left( {C_{r} - C^{ * }_{r} } \right)}{\left( {C_{{\text{a}}} - C^{ * }_{{\text{a}}} } \right)} + m_{2} {\left( {\theta k + \pi \nu C_{{\text{r}}} } \right)}{\left( {C - C^{ * } } \right)}{\left( {C_{{\text{a}}} - C^{ * }_{{\text{a}}} } \right)}} \\{{} + m_{3} \alpha C_{{\text{r}}} {\left( {C - C^{ * } } \right)}{\left( {C_{{\text{a}}} - C^{ * }_{{\text{a}}} } \right)}} \\ \end{array} $$
(B3)

Now \( \frac{{dU}} {{dt}} \) will be negative definite if the following inequalities are satisfied:

$$ m_{1} r^{2} < \frac{1} {3}m_{0} r_{0} \lambda _{0} $$
$$ m_{0} {\left( {\lambda _{1} C^{ * }_{{\text{d}}} } \right)}^{2} < \frac{2} {5}m_{2} \lambda _{0} \delta $$
$$ m_{1} {\left( {r_{1} C^{ * }_{{\text{r}}} } \right)}^{2} < \frac{2} {{15}}m_{2} r_{0} \delta $$
$$m_{2} {\left( {dC^{ * } - \pi \nu C^{ * }_{{\text{a}}} } \right)}^{2} < \frac{2}{{15}}m_{1} r_{0} \delta $$
$$ m_{3} {\left( {\alpha C^{ * } + \nu C_{{\text{a}}} } \right)}^{2} < \frac{2} {9}m_{1} r_{0} {\left( {k + \nu C^{ * }_{{\text{r}}} } \right)} $$
$$ m_{4} {\left( {\delta _{{{\text{p1}}}} C_{{\text{p}}} } \right)}^{2} < \frac{1} {3}m_{1} r_{0} \delta _{{\text{p}}} $$
$$m_{{\text{1}}} {\left( {r_{2} C^{*}_{r} } \right)}^{2} < \frac{1}{3}m_{4} r_{0} \delta _{p} $$
$$ m_{2} {\left( {\theta k + \pi \nu C_{{\text{r}}} } \right)}^{2} < \frac{4} {{15}}m_{3} \delta {\left( {k + \nu C^{ * }_{{\text{r}}} } \right)} $$
$$ m_{3} {\left( {\alpha C_{{\text{r}}} } \right)}^{2} < \frac{4} {{15}}m_{2} \delta {\left( {k + \nu C^{ * }_{{\text{r}}} } \right)} $$

Now choosing appropriate values of the variables from Ω and the constants m 1 = 1, \( m_{0} > \frac{{3r}} {{r_{0} \lambda _{0} }} \) the above inequalities reduce to the following forms after some simplifications,

$$ \frac{{15}} {{2r_{0} \delta }}\max {\left\{ {\frac{{r{\left( {\lambda_{1} C^{ * }_{{\text{d}}} } \right)}^{2} }} {{\lambda ^{2}_{0} }},{\left( {r_{1} C^{ * }_{{\text{r}}} } \right)}^{2} } \right\}} < m_{2} < \frac{2} {{15}}\frac{{\delta r_{0} }} {{{\left( {\alpha C^{ * } - \pi \nu C^{ * }_{{\text{a}}} } \right)}^{2} }} $$
(B4)
$$ 3r_{2} \delta _{{{\text{p1}}}} C^{ * }_{{\text{r}}} C^{ * }_{{\text{p}}} < \delta _{{\text{p}}} r_{0} $$
(B5)
$$ {\left( {\theta k + \pi \nu \frac{{r\lambda }} {{r_{0} \lambda _{0} }}} \right)}^{2} m_{2} < \frac{8} {{15}}\delta {\left( {k + \nu C^{ * }_{{\text{r}}} } \right)}^{2} \min {\left\{ {\frac{2} {{15}}\frac{\delta } {{{\left( {\frac{{\alpha r\lambda }} {{r_{0} \lambda _{0} }}} \right)}^{2} }}m_{2} ,\frac{1} {9}\frac{{r_{0} }} {{{\left( {\alpha C^{ * } + \nu \frac{Q} {{\delta _{{\text{m}}} }}} \right)}^{2} }}} \right\}} $$
(B6)

where the coefficient m 2 is so chosen that the inequalities (B4) and (B6) are satisfied.

Under these conditions, \( \frac{{dU}} {{dt}} \) would be negative definite showing that U is Lyapunov’s function and hence the theorem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, J.B., Sundar, S., Misra, A.K. et al. Modelling the Removal of Gaseous Pollutants and Particulate Matters from the Atmosphere of a City by Rain: Effect of Cloud Density. Environ Model Assess 13, 255–263 (2008). https://doi.org/10.1007/s10666-007-9085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-007-9085-7

Keywords

Navigation