Skip to main content

Advertisement

Log in

Constraining the anisotropy structure of the crust by joint inversion of seismic reflection travel times and wave polarizations

  • Original article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

In the context of wide-angle seismic profiling, the determination of the physical properties of the Earth crust, such as the elastic layer depth and seismic velocity, is often performed by inversion of P- and/or S-phases propagation data supplying the geometry of the medium (reflector depths) or any other structural parameter (P- or S-wave velocity, density...). Moreover, the inversion for velocity structure and interfaces is commonly performed using only seismic reflection travel times and/or crustal phase amplitudes in isotropic media. But it is very important to utilize more available information to constrain the non-uniqueness of the solution. In this paper, we present a simultaneous inversion method of seismic reflection travel times and polarizations data of transient elastic waves in stratified media to reconstruct not only layer depth and vertical P-wave velocity but also the anisotropy feature of the crust based on the estimation of the Thomsen’s parameters. We carry out a checking with synthetic data, comparing the inversion results obtained by anisotropic travel-time inversion to the results derived by joint inversion of seismic reflection travel times and polarizations data. The comparison proves that the first procedure leads to biased anisotropic models, while the second one fits nearly the real model. This makes the joint inversion method feasible. Finally, we investigate the geometry, P-wave velocity structure and anisotropy of the crust beneath Southeastern China by applying the proposed inversion method to previously acquired wide-angle seismic data. In this case, the anisotropy signature provides clear evidence that the Jiangshan-Shaoxing fault is the natural boundary between the Yangtze and Cathaysia blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkhalifah T, Tsvankin I (1995) Velocity analysis for transversely isotropic media. Geophysics 60:1550–1566

    Article  Google Scholar 

  • Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67:4427–4440

    Article  Google Scholar 

  • Bai Z, Wang C (2004) Tomography research of the Zhefang-Binchuan and Menglian-Malong wide-angle seismic profiles in Yunnan province. Chinese J Geophys 47:257–267

    Google Scholar 

  • Benhama A, Cliet C, Dubesset M (1988) Study and applications of spatial directional filtering in three-component recordings. Geophysical Prospecting 36:591–613

    Article  Google Scholar 

  • Berryman JG (1979) Long-wave elastic anisotropy in transversely isotropic media. Geophysics 44:896–917

    Article  Google Scholar 

  • Bishop TN, Bube KP, Cutler RT (1985) Tomographic determination of velocity and depth in laterally varying media. Geophysics 50:903–923

    Article  Google Scholar 

  • Byun BS, Corrigan D (1990) Seismic traveltime inversion for transverse isotropy. Geophysics 55:192–200

    Article  Google Scholar 

  • Chen JF, John BM (1998) Crustal evolution of southeastern China: Nd and Sr isotropic evidence. Tectonophysics 284:101–133

    Article  Google Scholar 

  • Crampin S (1986) Anisotropy and transverse isotropy. Geophys Prospect 34:94–99

    Article  Google Scholar 

  • Eduardo LF, Paul LS (1994) Traveltime compution in transverly istropic media. Geophysics 59:272–281

    Article  Google Scholar 

  • Flinn EA (1965) Signal analysis using rectilinearity and direction of particle motion. Proc IEEE 12:1874–1876

    Article  Google Scholar 

  • Gilder SA, Coe RS, Wu HR, Kuang GD, Zhao XX, Wu Q, Tang XZ (1993) Cretaceous and Tertiary paleomagnetic results from southeast China and their tectonic implications. Earth Planet Sci Lett 117:637–652

    Article  Google Scholar 

  • Gilder SA, Coe RS, Wu HR, Kuang GD, Zhao XX, Wu Q (1995) Triassic paleomagnetic data from south China and their bearing on the tectonic evolution of the western circum-pacific region. Earth Planet Sci Lett 131:269–287

    Article  Google Scholar 

  • Gilder SA, Gill J, Coe RS (1996) Isotopic and paleo constraints on the Mesozoic tectonic evolution of south China. J Geophys Res 101:16137–16154

    Article  Google Scholar 

  • Grechka V, Pech A, Tsvankin I, Han B (2001) Velocity analysis for tilted transversely isotropic media: a physical modelling example. Geophysics 66:904–910

    Article  Google Scholar 

  • Helbig K (1983) Elliptical anisotropy: its significance and meaning. Geophysics 48:825–832

    Article  Google Scholar 

  • Helbig K (1984) Transverse isotropy in exploration seismology. Geophys JR Astr Soc 76:79–88

    Google Scholar 

  • Helbig K, Schoenberg M (1987) Anomalous polarization of elastic waves in transversely isotropic media. J Acoust Soc Am 81:1235–1245

    Article  Google Scholar 

  • Hong D, Xie X, Zhang J (1990) Isotope geochemistry of granitoids in south China and their metallogeny. Res Geol 48:251–263

    Article  Google Scholar 

  • Hong D, Xie X, Zhang J (2002) Geological significance of the Hangzhou-Zhuguangshan-Huashan high granite belt. Geol Bull of China 21:348–354

    Google Scholar 

  • Horne S, Leaney S (2000) Polarization and slowness component inversion for VTI anisotropy. Geophys Prospect 48:779–788

    Article  Google Scholar 

  • Hsu KJ, Sun S, Li JL, Chen HH, Peng HP, Sengor AMC (1988) Mesozoic overthrust tectonics in south China. Geology 16:418–421

    Article  Google Scholar 

  • Hsu KJ, Li JL, Chen HH, Wang QC, Sun S, Sengor AMC (1990) Tectonics of South China: key to understanding West Pacific geology. Tectonophysics 183:9–39

    Article  Google Scholar 

  • Hu G, William M (1992) Formal inversion of laterally heterogeneous velocity structure from P-wave polarization data. Geophys J Int 110:63–69

    Article  Google Scholar 

  • Hudson JA (1980) Overall properties of a cracked solid. Math Proc of the Cambridge Philosophical Society 88:371–384

    Article  Google Scholar 

  • Jurkevics A (1988) Polarization analysis of three-component array data. Bull Seism Soc Am 78:1725–1743

    Google Scholar 

  • Levin FK (1979) Seismic velocities in transversely isotropic media. Geophysics 44:918–936

    Article  Google Scholar 

  • Lutter WJ, Nowack RL (1990) Inversion for crustal structure using reflections from the PASSCAL Ouachita experiment. J Geophys Res 95:4633–4646

    Article  Google Scholar 

  • Macbeth C (2002) Multi-component vsp analysis for applied seismic anisotropy, Elsevier Science Ltd.

  • Mario R (2003) Analysis of particle motion recorded by three-component seismic stations. Final Report, GEOP 523

  • Park J, Vernon FL, Lindberg CR (1987) Frequency dependent polarization analysis of high-frequency seismograms. J Geophys Res 92:12664–12674

    Article  Google Scholar 

  • Pavlis GL, Booker JR (1980) The mixed discrete continuous inverse problem: application to the simultaneous determination of earthquake hypocenters and velocity structure. J Geophys Res 85:4801–4810

    Article  Google Scholar 

  • Pei R, Hong D (1995) The granites of south China and their metallogeny. Episodes 18:77–82

    Google Scholar 

  • Perelberg AL, Hornbostel SC (1994) Applications of seismic polarization analysis. Geophysics 59:119–130

    Article  Google Scholar 

  • Postma GW (1955) Wave propagation in a stratified medium. Geophysics 20:780–806

    Article  Google Scholar 

  • Pullammanappallil SK, Louie JN (1993) Inversion of seismic reflection traveltimes using a nonlinear optimization scheme. Geophysics 58:1607–1620

    Article  Google Scholar 

  • Pullammanappallil SK, Louie JN (1994) A generalized simulated-annealing optimization for inversion of first-arrival times. Bull Seism Soc Am 84:1397–1409

    Google Scholar 

  • Pullammanappallil SK, Louie JN (1997) A combined first-arrival travel time and reflection coherency optimization approach to velocity estimation. Geophys Res Lett 24:511–514

    Article  Google Scholar 

  • Qin Y, Zhang Z, Li S (2003a) CDP mapping in tilted transversely isotropic (TTI) media, Part I: method and effectiveness. Geophysical Prospecting 51:315–324

    Article  Google Scholar 

  • Qin Y, Zhang Z, Xu S (2003b) CDP mapping in tilted transversely isotropic (TTI) media, Part II: velocity analysis by combining CDP mapping with a genetic algorithm. Geophysical Prospecting 51:325–332

    Article  Google Scholar 

  • Rommel BE (1994) Approximate polarization of plane waves in a medium having weak transverse isotropy. Geophysics 59:1605–1612

    Article  Google Scholar 

  • Samuel HB (1990) Velocity–depth ambiguity of reflection traveltimes. Geophysics 55:266–276

    Article  Google Scholar 

  • Spencer C, Gubbins D (1980) Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophys J R Astron Soc 63:95–116

    Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966

    Article  Google Scholar 

  • Tsvankin I (1996) P-wave signatures and notation for transversely isotropic media, an overview. Geophysics 61:467–483

    Article  Google Scholar 

  • Tsvankin I, Thomsen L (1995) Inversion of reflection traveltimes for transverse isotropy. Geophysics 60:1095–1107

    Article  Google Scholar 

  • Vidale JE (1986) Complex polarization analysis of particle motion. Bull Seism Soc Am 76:1393–1405

    Google Scholar 

  • Xiong S, Lai M, Liu H, Yu K (1993) Lithosphere structure and velocity distribution from Tunxi to Wenzhou. In: Li J (ed.) Lithosphere structure and geological evolution of Southeastern China. China Meteorological Press, Beijing

    Google Scholar 

  • Yang DH, Liu E, Zhang Z, Teng J (2002) Finite-difference modelling in two-dimensional anisotropic media using a flux-corrected transport technique. Geophys J Int 148:320–328

    Article  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

  • Zhang Z, Wang G, Teng J, Klemperer S (2000) CDP mapping to obtain the fine structure of the crust and upper mantle from seismic sounding data: an example for Southeastern China. Phys Earth Planet Inter 122:133–146

    Article  Google Scholar 

  • Zhang Z, Lin G, Chen J, Harris JM, Han L (2003) Inversion for elliptically anisotropic velocity using VSP reflection traveltimes. Geophysical Prospecting 51:159–166

    Article  Google Scholar 

  • Zhang Z, Badal J, Li Y, Chen Y, Yang L, Teng J (2005) Crust–upper mantle seismic velocity structure across southeastern China. Tectonophysics 395:137–157

    Article  Google Scholar 

  • Zhang Z, Wang Y (2007) Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Phys Earth Planet Inter doi:10.1016/j.pepi.2007.08.005

  • Zhang Z, Zhang X, Badal J (2008) Composition of the crust beneath Southeasthern China by an integrated geophysical dataset. J Geophys Res 113, B04417, doi:101029/20006JB004503

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Badal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Teng, J. & Badal, J. Constraining the anisotropy structure of the crust by joint inversion of seismic reflection travel times and wave polarizations. J Seismol 13, 219–240 (2009). https://doi.org/10.1007/s10950-008-9123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-008-9123-1

Keywords

Navigation