Skip to main content
Log in

On the use of the autocorrelation function: the constraint of using frequency band-limited signals for monitoring relative velocity changes

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Correlations of seismic noise are commonly used to monitor temporal variations of relative seismic velocity in period ranges from 1 s up to 100 s. Of particular interest is the detection of small changes in the order of 0.01–0.1 % in propagation speeds. Measuring such small differences can, however, be significantly biased by temporal variations in the properties of the noise sources within the corresponding frequency band. Using synthetic data, we show that apparent relative velocity variations might appear only due to changes in the amplitude and frequency content caused by source variations. Removing such unwanted effects by applying narrow bandpass filters in the preprocessing restricts the high-resolution analysis of any signal due to Gabor’s uncertainty limit, i.e., the correlation function suffers a limited resolution to time delay estimates for small correlation times, low-frequency ranges, and in narrow frequency bands. Better understanding of spatiotemporal noise source properties and the theoretical limitations of time–frequency analysis is critical for accurate and reliable passive monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baig AM, Campillo M, Brenguier F (2009) Denoising seismic noise cross correlations. J Geophys Res 114:2156–2202. doi: 10.1029/2008JB006085

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260

    Article  Google Scholar 

  • Bindi D, Marzorati S, Parolai S, Strollo A, Jäkel KH (2009) Empirical spectral ratios estimated in two deep sedimentary basins using microseisms recorded by short-period seismometers. Geophys J Int 176:175–184

    Article  Google Scholar 

  • Brenguier F, Shapiro NM, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008a) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130

    Article  Google Scholar 

  • Brenguier F, Campillo M, Hadziioannou C, Shapiro NM, Nadeau RM, Larose E (2008b) Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science 321:1478–1481

    Article  Google Scholar 

  • Bromirski PD, Duennebier FK, Stephen RA (2005) Mid‐ocean microseisms. Geochem Geophys Geosys 6:Q04009. doi: 10.1029/2004GC000768

  • Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299:547–549

    Article  Google Scholar 

  • Carter GC (1987) Coherence and time delay estimation. Proc IEEE 75:236–255

    Article  Google Scholar 

  • Chen JH, Froment B, Liu QY, Campillo M (2010) Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake. Geophys Res Lett 37:L18302. doi:10.1029/2010GL044582

  • Clarke D, Zaccarelli L, Shapiro NM, Brenguier F (2011) Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophys J Int 186:867–882

    Article  Google Scholar 

  • Cohen L (1989) Time–frequency distributions—a review. Proc IEEE 77:941–981

    Article  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  • Cupillard P, Stehly L, Romanowicz B (2011) The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise. Geophys J Int 184:1397–1414

    Article  Google Scholar 

  • Derode A, Tourin A, Fink M (1999) Ultrasonic pulse compression with one-bit time reversal through multiple scattering. J Appl Phys 85:6343–6352

    Article  Google Scholar 

  • Derode A, Larose E, Campillo M, Fink M (2003) How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Appl Phys Lett 83:3054–3056

    Article  Google Scholar 

  • Draganov D, Campman X, Thorbecke J, Verdel A, Wapenaar K (2009) Reflection images from ambient seismic noise. Geophysics 74:A63–A67

    Article  Google Scholar 

  • Duputel Z, Ferrazzini V, Brenguier F, Shapiro N, Campillo M, Nercessian A (2009) Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007. J Volcanol Geotherm Res 184:164–173

    Article  Google Scholar 

  • Ekström G, Abers GA, Webb SC (2009) Determination of surface‐wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophys Res Lett 36:L18301. doi: 10.1029/2009GL039131

  • Evans JR, Followill F, Hutt CR, Kromer RP, Nigbor RL, Ringler AT, Steim JM, Wielandt E (2010) Method for calculating self-noise spectra and operating ranges for seismographic inertial sensors and recorders. Seismol Res Lett 81:640–646

    Article  Google Scholar 

  • Fichtner A (2014) Source and processing effects on noise correlations. Geophys J Int 197:1527–15331

    Article  Google Scholar 

  • Froment B, Campillo M, Roux P, Gouédard P, Verdel A, Weaver RL (2010) Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics 75:85–93

    Article  Google Scholar 

  • Froment B, Campillo M, Chen JH, Liu QY (2013) Deformation at depth associated with the 12 May 2008 MW 7.9 Wenchuan earthquake from seismic ambient noise monitoring. Geophys Res Lett 40:78–82

    Article  Google Scholar 

  • Gabor D (1946) Theory of communication. Part 1: the analysis of information. J Inst Electr Eng 93:429–441

    Google Scholar 

  • Gouédard P, Roux P, Campillo M, Verdel A (2008) Convergence of the two-point correlation function toward the Green’s function in the context of a seismic-prospecting data set. Geophysics 73:47–53

    Article  Google Scholar 

  • Guillier B, Atakan K, Chatelain JL, Havskov J, Ohrnberger M, Cara F, Duval AM, Zacharopoulos S, Teves-Costa P, the SESAME Team (2008) Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng 6:3–31

    Article  Google Scholar 

  • Hadziioannou C, Larose E, Coutant O, Roux P, Campillo M (2009) Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments. J Acoust Soc Am 125:3688–3695

    Article  Google Scholar 

  • Hadziioannou C, Larose E, Baig A, Roux P, Campillo M (2011) Improving temporal resolution in ambient noise monitoring of seismic wave speed. J Geophys Res 116:B07304. doi:10.1029/2011JB008200

    Article  Google Scholar 

  • Hanasoge SM, Branicki MM (2013) Interpreting cross-correlations of one-bit filtered seismic noise. Geophys J Int 195:1811–1830

    Article  Google Scholar 

  • Herbers THC, Guza RT (1994) Wind-wave nonlinearity observed at the seafloor, part I: forced-wave energy. J Phys Oceanogr 21:1740–1761

    Article  Google Scholar 

  • Hillers G, Campillo M, Ma KF (2014a) Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties. Earth Planet Sci Lett 391:121–127

    Article  Google Scholar 

  • Hillers G, Retailleau L, Campillo M, Inbal A, Ampuero JP, Nishimura T (2014b) In-situ observations of velocity changes in response to tidal deformation from analysis of the high-frequency ambient field. J Geophys Res 120:210–225. doi:10.1002/2014JB011318

    Article  Google Scholar 

  • Hobiger M, Wegler U, Shiomi K, Nakahara H (2012) Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate–Miyagi Nairiku earthquake, Japan. J Geophys Res 117:B09313. doi: 10.1029/2012JB009402

  • Hobiger M, Wegler U, Shiomi K, Nakahara H (2014) Single-station cross-correlation analysis of ambient seismic noise: application to stations in the surroundings of the 2008 Iwate–Miyagi Nairiku earthquake. Geophys J Int 198:90–109

    Article  Google Scholar 

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    Google Scholar 

  • Kibblewhite AC, Ewans KC (1985) Wave–wave interactions, microseisms, and infrasonic ambient noise in the ocean. J Acoust Soc Am 78:981–994

    Article  Google Scholar 

  • Larose E, Margerin L, Derode A, van Tiggelen B, Campillo M, Shapiro N, Paul A, Stehly L, Tanter M (2006) Correlation of random wave fields: an interdisciplinary review. Geophysics 71:SI11–SI21

    Article  Google Scholar 

  • Lau NC (1988) Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J Atmos Sci 45:2718–2743

    Article  Google Scholar 

  • Liu Z, Huang J, Li J (2010) Comparison of four techniques for estimating temporal change of seismic velocity with passive image interferometry. Earthq Sci 23:511–518

    Article  Google Scholar 

  • Lobkis OI, Weaver RL (2003) Coda-wave interferometry in finite solids: recovery of p-to-s conversion rates in an elastodynamic billiard. Phys Rev Lett 90:254302

    Article  Google Scholar 

  • Maeda T, Obara K, Yukutake Y (2010) Seismic velocity decrease and recovery related to earthquake swarms in a geothermal area. Earth Planets Space 62:685

    Article  Google Scholar 

  • Marzorati S, Bindi D (2006) Ambient noise levels in north central Italy. Geochem Geophys Geosys 7:Q09010. doi: 10.1029/2006GC001256

  • McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94:1517–1527

    Article  Google Scholar 

  • Meier U, Shapiro NM, Brenguier F (2010) Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophys J Int 181:985–996

    Google Scholar 

  • Mosser B, Appourchaux T (2009) On detecting the large separation in the autocorrelation of stellar oscillation times series. Astron Astrophys 508:877–887

    Article  Google Scholar 

  • Obermann A, Planès T, Larose E, Sens-Schönfelder C, Campillo M (2013) Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophys J Int 194:372–382

    Article  Google Scholar 

  • Ohmi S, Hirahara K, Wada H, Ito K (2008) Temporal variations of crustal structure in the source region of the 2007 Noto Hanto Earthquake, central Japan, with passive image interferometry. Earth Planets Space 60:1069

    Article  Google Scholar 

  • Parolai S, Cara F, Bindi D, Pacor F (2009) Empirical site-specific response-spectra correction factors for the Gubbio basin (central Italy). Soil Dyn Earthq Eng 29:546–552

    Article  Google Scholar 

  • Poupinet G, Ellsworth WL, Frechet J (1984) Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras Fault. California J Geophys Res 89:5719–5731

    Article  Google Scholar 

  • Quazi A (1981) An overview on the time delay estimate in active and passive systems for target localization. IEEE Trans Acoust Speech Signal Process 29:527–533

    Article  Google Scholar 

  • Ratdomopurbo A, Poupinet G (1995) Monitoring a temporal change of seismic velocity in a volcano: application to the 1992 eruption of Mt. Merapi (Indonesia). Geophys Res Lett 22:775–778

    Article  Google Scholar 

  • Richter T, Sens-Schönfelder C, Kind R, Asch G (2014) Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in Northern Chile with passive image interferometry. J Geophys Res 119:4747–4765

    Article  Google Scholar 

  • Rivet D, Campillo M, Shapiro NM, Cruz‐Atienza V, Radiguet M, Cotte N, Kostoglodov V (2011) Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico. Geophys Res Lett 38:L08308. doi: 10.1029/2011GL047151

  • Roux P, Sabra KG, Gerstoft P, Kuperman WA, Fehler MC (2005) P‐waves from cross‐correlation of seismic noise. Geophys Res Lett 32:L19303. doi: 10.1029/2005GL023803

  • Roxburgh IW, Vorontsov SV (2006) The autocorrelation function of stellar p-mode measurements and its diagnostic properties. Mon Not R Astron Soc 369:1491–1496

    Article  Google Scholar 

  • Sabra KG, Gerstoft P, Roux P, Kuperman WA, Fehler MC (2005) Extracting time-domain Greens function estimates from ambient seismic noise. Geophys Res Lett 32:L03310. doi: 10.1029/2004GL021862

  • Seats KJ, Lawrence JW, Prieto GA (2012) Improved ambient noise correlation functions using Welch’ s method. Geophys J Int 188:513–523

    Article  Google Scholar 

  • Sens‐Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33:L21302. doi: 10.1029/2006GL027797

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618

    Article  Google Scholar 

  • Snieder R, Grêt A, Douma H, Scales J (2002) Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science 295:2253–2255

    Article  Google Scholar 

  • Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long‐range correlation properties. J Geophys Res 111:B10306. doi: 10.1029/2005JB004237

  • Stehly L, Cupillard P, Romanowicz B (2011) Towards improving ambient noise tomography using simultaneously curvelet denoising filters and SEM simulations of seismic ambient noise. Compt Rendus Geosci 343:591–599

    Article  Google Scholar 

  • Stephen RA, Spiess FN, Collins JA, Hildebrand JA, Orcutt JA, Peal KR, Vernon FL, Wooding FB (2003) The ocean seismic network pilot experiment. Geochem Geophys Geosyst 4(10):1092. doi:10.1029/2002GC000485

  • Stutzmann E, Roult G, Astiz L (2000) GEOSCOPE station noise levels. Bull Seismol Soc Am 90:690–701

    Article  Google Scholar 

  • Takagi R, Okada T, Nakahara H, Umino N, Hasegawa A (2012) Coseismic velocity change in and around the focal region of the 2008 Iwate–Miyagi Nairiku earthquake. J Geophys Res 117:6315. doi: 10.1029/2012JB009252

  • Tsai VC, Moschetti MP (2010) An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results. Geophys J Int 182:454–460

    Article  Google Scholar 

  • Ueno T, Saito T, Shiomi K, Enescu B, Hirose H, Obara K (2012). Fractional seismic velocity change related to magma intrusions during earthquake swarms in the eastern Izu peninsula, central Japan. J Geophys Res 117:B12305. doi: 10.1029/2012JB009580

  • Ugalde A, Gaite B, Villaseñor A (2014) Temporal variations of seismic velocity at Paradox Valley, Colorado, using passive image interferometry. Bull Seismol Soc Am 104:1088–1099

    Article  Google Scholar 

  • Wang B, Zhu P, Chen Y, Niu F, Wang B (2008) Continuous subsurface velocity measurement with coda wave interferometry. J Geophys Res 113:B12313. doi: 10.1029/2007JB005023

  • Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71:SI33–SI46

    Article  Google Scholar 

  • Weaver RL, Lobkis OI (2005) Fluctuations in diffuse field–field correlations and the emergence of the Green’s function in open systems. J Acoust Soc Am 117:3432–3439

    Article  Google Scholar 

  • Weaver RL, Hadziioannou C, Larose E, Campillo M (2011) On the precision of noise correlation interferometry. Geophys J Int 185:1384–1392

    Article  Google Scholar 

  • Wegler U, Sens‐Schönfelder C (2007) Fault zone monitoring with passive image interferometry. Geophys J Int 168:1029–1033

    Article  Google Scholar 

  • Wegler U, Nakahara H, Sens‐Schönfelder C, Korn M, Shiomi K (2009) Sudden drop of seismic velocity after the 2004 Mw 6.6 mid‐Niigata earthquake, Japan, observed with passive image interferometry. J Geophys Res 114:B06305. doi: 10.1029/2008JB005869

  • Xu ZJ, Song X (2009) Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation. Proc Natl Acad Sci 106:14207–14212

    Article  Google Scholar 

  • Zaccarelli L, Shapiro NM, Faenza L, Soldati G, Michelini A (2011) Variations of crustal elastic properties during the 2009 L’Aquila earthquake inferred from cross‐correlations of ambient seismic noise. Geophys Res Lett 38:L24304. doi: 10.1029/2011GL049750

  • Zhan Z, Tsai VC, Clayton RW (2013) Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophys J Int 194:1574–1581

    Article  Google Scholar 

Download references

Acknowledgments

We thank Nori Nakata and two anonymous reviewers for their precious comments that significantly improved the manuscript. For the field experiment, the instruments were provided by the Geophysical Instrumental Pool Potsdam. K. Fleming kindly improved our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pilz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilz, M., Parolai, S. On the use of the autocorrelation function: the constraint of using frequency band-limited signals for monitoring relative velocity changes. J Seismol 20, 921–934 (2016). https://doi.org/10.1007/s10950-016-9571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9571-y

Keywords

Navigation