Brought to you by:
The following article is Open access

Anomalous Enhancement of Seebeck Coefficient in Pr-Based 1-2-20 System with Non-Kramers Doublet Ground States

, , , , , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Y Machida et al 2015 J. Phys.: Conf. Ser. 592 012025 DOI 10.1088/1742-6596/592/1/012025

1742-6596/592/1/012025

Abstract

Low-temperature Seebeck coefficient S/T measurements have been performed on Pr-based 1-2-20 system, PrTr2X20 (Tr = Ti, Ta, V, Ir, X = Al, Zn) with non-Kramers doublet ground states. For PrTr2X20 with X = Al, we find a large S/T, which amounts to those of heavy fermion metals. By contrast, S/T for PrIr2Zn20 is found to be considerably small as the same order of magnitude as those of ordinary metals, despite the commonly enhanced Sommerfeld coefficient γ throughout the system. A satisfactory of the quasi-universal relation between S/T and γ as well as the Kadowaki-Woods relation demonstrates that the mass enhancement is realized in PrTr2Al20 due to the hybridization between f-electrons and the conduction electrons. We also find that the small S/T of PrIr2Zn20 is enhanced at low temperatures under the fields on the verge of quadrupole ordered phase, and in the same regime, the electrical resistivity follows the quadratic temperature dependence with a steep slope as a characteristic of Fermi liquid. The results imply an emergence of a nontrivial coherent state with sizable mass enhancement associated with the quadrupole degree of freedom.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/592/1/012025