Skip to main content

Advertisement

Log in

Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA–ICP–MS study

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The middle Jurassic Coast Range Ophiolite (CRO) is one of the most important tectonic elements in western California, cropping out as tectonically dismembered elements that extend 700 km from south to north. The volcanic and plutonic sections are commonly interpreted to represent a supra-subduction zone (SSZ) ophiolite, but models specifying a mid-ocean ridge origin have also been proposed. These contrasting interpretations have distinctly different implications for the tectonic evolution of the western Cordillera in the Jurassic. If an SSZ origin is confirmed, we can use the underlying mantle peridotites to elucidate melt processes in the mantle wedge above the subduction zone. This study uses laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to study pyroxenes in peridotites from four mantle sections in the CRO. Trace element signatures of these pyroxenes record magmatic processes characteristic of both mid-ocean ridge and supra-subduction zone settings. Group A clinopyroxene display enriched REE concentrations [e.g., Gd (0.938–1.663 ppm), Dy (1.79–3.24 ppm), Yb (1.216–2.047 ppm), and Lu (0.168–0.290 ppm)], compared to Group B and C clinopyroxenes [e.g., Gd (0.048–0.055 ppm), Dy (0.114–0.225 ppm), Yb (0.128–0.340 ppm), and Lu (0.022–0.05 ppm)]. These patterns are also evident in orthopyroxene. The differences between these geochemical signatures could be a result of a heterogeneous upper mantle or different degrees of partial melting of the upper mantle. It will be shown that CRO peridotites were generated through fractional melting. The shapes of REE patterns are consistent with variable degrees of melting initiated within the garnet stability field. Models call for 3% dry partial melting of MORB-source asthenosphere in the garnet lherzolite field for abyssal peridotites and 15–20% further partial melting in the spinel lherzolite field, possibly by hydrous melting for SSZ peridotites. These geochemical variations and occurrence of both styles of melting regimes within close spatial and temporal association suggest that certain segments of the CRO may represent oceanic lithosphere, attached to a large-offset transform fault and that east-dipping, proto-Franciscan subduction may have been initiated along this transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoric and solar. Geochim Cosmochim Acta 53:197–214. doi:10.1016/0016-7037(89)90286-X

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretations. Chem Geol 113:191–204

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  Google Scholar 

  • Barth MG, Mason PRD, Davies GR, Dijkstra AH, Drury MR (2003) Geochemistry of the Othris Ophiolite, Greece: evidence for refertilization? J Petrol 44:1759–1785

    Article  Google Scholar 

  • Batanova VG, Sobolev AV (2000) Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 28:55–58

    Article  Google Scholar 

  • Batanova VG, Suhr G, Sobolev AV (1998) Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochim Cosmochim Acta 62:853–866

    Article  Google Scholar 

  • Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85

    Article  Google Scholar 

  • Choi SH, Mukasa SB, Shervais JW (2008a) Initiation of Franciscan subduction along a large-offset fracture zone: evidence from mantle perdotites, Stonyford, California. Geology 36(8):595–598

    Article  Google Scholar 

  • Choi SH, Shervais JW, Mukasa SB (2008b) Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib Mineral Petrol (in press). doi:10.1007/s00410-008-0300-6

  • Denoyer ER (1991) Current trends in ICP-mass spectrometry. At Spectrosc 12:215–224

    Google Scholar 

  • Dick HJB (1989) Abyssal peridotites, very slow spreading ridges, and ocean ridge magmatism. In: Saunders AJ, Norry MJ (eds) Magmatism in the Oceanic Basins. Geological Society of London Special Publication, vol 42, pp 71–105

  • Dick HJB, Bullen T (1984) Chromian spinal as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dick HJB, Fisher RL (1984) Mineralogic studies of the residues of mantle melting: abyssal and alpine type peridotites. In: Kompobst J (ed) The mantle and crustal–mantle relationships—mineralogical, petrological, and geodynamic processes, 3rd international Kimberlite conference, vol II. New York, NY, pp 295–308

  • Dick HJB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69:88–106

    Article  Google Scholar 

  • Elthon D (1992) Chemical trends in abyssal peridotites: refertilization of depleted oceanic mantle. J Geophys Res 97:9015–9025

    Article  Google Scholar 

  • Evarts RC, Coleman RG, Schiffman P (1999) The Del Puerto ophiolite: petrology and tectonic setting. In: Wagner DL, Graham SA (eds) Geologic field trips in northern California. California Division of Mines and Geology Special Publication, vol 119, pp 136–149

  • Falloon TJ, Green DH, Hatton CJ, Harris KL (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 Kb and application to basalt petrogenesis. J Petrol 29(6):1257–1282

    Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    Article  Google Scholar 

  • Gast PW (1968) Upper mantle chemistry and evolution of the Earth’s crust. In: Phinney RA (ed) The history of the Earth’s crust, a symposium. Princeton University Press, Princeton, NJ, pp 15–27

    Google Scholar 

  • Giaramita MI, MacPherson GJ, Phipps SP (1998) Petrologically diverse basalts from a fossil oceanic forearc in California: the Llanada and Black Mountain remnants of the Coast Range ophiolite. Geol Soc Am Bull 110:553–571

    Article  Google Scholar 

  • Godfrey NJ, Dilek Y (2000) Mesozoic assimilation of oceanic crust and island arc into the North American continental margin in California and Nevada: insights from geophysical data. In: Dilek Y, Moores Eldridge M, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Geological Society of America (GSA) Boulder, Special Paper 349, pp 365–382

  • Godfrey NJ, Klemperer SL (1998) Ophiolite basement to a forearc basin and implications for continental growth; the Coast Range/Great Valley Ophiolite, California. Tectonics 17:558–570

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, cpx, and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200C. Lithos 53:165–187

    Article  Google Scholar 

  • Hellebrand EW, Snow JE, Dick HJB, Devey CW, Hofmann AW (1999) Reactive crack flow in the oceanic mantle: an ion probe study on cpx from vein-bearing abyssal peridotites. Ofioliti 24:106–107

    Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43(12):2305–2338

    Article  Google Scholar 

  • Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215

    Article  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489

    Article  Google Scholar 

  • Hopson CA, Mattinson JM, Pessagno EA (1981) Coast Range ophiolite, western California. In: Ernst WG (ed) The Geotectonic Development of California. Rubey, vol 1, pp 418–510

  • Hopson CA, Mattinson JM, Pessagno EA, Luyendyk BP (2008), California Coast Range ophiolite: composite middle and late Jurassic oceanic lithosphere. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geological Society of America Special Paper 438, pp 1–102. doi:10.1130/2008.2438(01)

  • Ingersoll RA (2000) Models for origin and emplacement of Jurassic ophiolites of northern California. In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geological Society of America Special Publication, vol 349, pp 395–402

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Proceedings of the ocean drilling program, scientific results 125. Texas A & M University, Ocean Drilling Program, College Station, TX, United States, pp 445–485

  • Jackson S, Longerich H, Horn I (1997) The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAMICP-MS) to in situ trace-element determinations in minerals. 4th Australian symposium on applied ICP-mass spectrometry, MacQuarie University, Sydney

  • James OB, Floss C, McGee JJ (2002) Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in lunar ferroan anorthosites. Geochim Cosmochim Acta 65(7):1269–1284

    Article  Google Scholar 

  • Jarvis KE, Williams JG (1993) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples. Chem Geol 106(3–4):251–262

    Article  Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol 133:60–68

    Article  Google Scholar 

  • Johnson KTM, Dick HJB (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J Geophys Res 97:9219–9241

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle; an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Article  Google Scholar 

  • Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil Trans R Soc Lond 355:283–318

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 2 applications. J Geophys Res 97(B5):6907–6926

    Article  Google Scholar 

  • Kostopoulos DK (1991) Melting of the shallow upper mantle: a new perspective. J Petrol 32:671–699

    Google Scholar 

  • Longerich HP, Jackson SE, Fryer BJ, Strong DF (1993) The Laser ablation microprobe-inductively coupled plasma-mass spectrometer. Geosci Can 20:21–27

    Google Scholar 

  • Mattinson JM, Hopson CA (2008) New high-precision CA-TIMS U-Pb zircon plateau ages for the Point Sal and San Simeon ophiolite remnants, California Coast Ranges. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson: Geological Society of America Special Paper 438. doi:10.1130/2008.2438(02)

  • Mercier JCC, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16(2):454–487

    Google Scholar 

  • Metcalf RV, Shervais JW (2008) Supra-subduction zone (SSZ) ophiolites: is there really an “Ophiolite Conundrum”? In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geological Society of America Special Paper 438, pp 191–222. doi: 10.1130/2008.2438(07)

  • Miller C, Thoni M, Wolfgang F, Schuster R, Melcher F, Meisel T, Zanetti A (2002) Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos 66:155–172

    Article  Google Scholar 

  • Moores E, Kellogg LH, Dilek Y (2000) Tethyan ophiolites, mantle convection, and tectonic “historical contingency”: a resolution of the “ophiolite conundrum” In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geologial Society of America Special Publication, vol 349, pp 3–12

  • Nickel KG, Brey G (1984) Subsolidus orthopyroxene-clinopyroxene systematics in the system CaO-Mg)-SiO2 to 60 Kb: a re-evaluation of the regular solution model. Contrib Mineral Petrol 87:35–42

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu T (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology 45(12):2423–2458

    Article  Google Scholar 

  • Niu Y, Hekinian R (1997) Basaltic liquids and harzburgitic residues in the Garrett transform: a case study of fast-spreading ridges. Earth Planet Sci Lett 146:243–258

    Article  Google Scholar 

  • Niu Y, Langmuir CH, Kinzler RJ (1997) The origin of abyssal peridotites: a new perspective. Earth Planet Sci Lett 152:251–265

    Article  Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites of the Izu-Bonin-Mariana forearc (ODP Leg 125) evidence for mantle melting and melt–mantle interactions in a suprasubduction zone setting. J Petrol 39:1577–1618

    Article  Google Scholar 

  • Parkinson IJ, Pearce JA, Thirwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the ODP Sci Results 125. Ocean Drilling Program, College Station, Texas, pp 487–506

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MJ, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144

    Article  Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the south sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  Google Scholar 

  • Pike JEN, Schwarzman EC (1977) Classification of textures in ultramafic xenoliths. J Geol 85(1):49–61

    Article  Google Scholar 

  • Saleeby JB (1982) Polygenetic ophiolite belt of the California Sierra Nevada: geochronological and tectonostratigraphic development. J Geophys Res B87:1803–1824

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05004. doi:10.1029/2003GC000597

    Article  Google Scholar 

  • Schweickert RA, Bogen NL, Girty GH, Hanson RE, Merguerian C (1984) Timing and structural expression of the Nevadan Orogeny, Sierra Nevada, California. Geol Soc Am Bull 95:967–979

    Article  Google Scholar 

  • Seyler M, Bonatti E (1997) Regional-scale melt–rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic Ocean). Earth Planet Sci Lett 146:273–287

    Article  Google Scholar 

  • Seyler M, Toplis MJ, Lorand JP, Luguet A, Cannat M (2001) Clinopyroxene microtextures reveal incompletely extracted melt in abyssal peridotites. Geology 29:155–158

    Article  Google Scholar 

  • Seyler M, Cannat M, Mevel C (2003) Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52 to 68 E). Geochem Geophys Geosyst 4(2):9101. doi:10.1029/2002GC000305

    Article  Google Scholar 

  • Seyler M, Lorand J-P, Toplis MJ, Godard G (2004) Asthenospheric metasomatism beneath the mid-ocean ridge: evidence from depleted abyssal peridotites. Geology 32(4):301–304. doi:10.1130/G20191.1

    Article  Google Scholar 

  • Seyler M, Lorand J-P, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15–20ºN: ODP Hole 1274A. Contrib Mineral Petrol 153:303–319. doi:10.1007/s00410-006-0148-6

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shervais JW (1979) Ultramafic and mafic layers in the Alpine lherzolite massif at Balmuccia, N. W. Italy. Proceedings of the Second Symposium Ivrea-Verbano, Memoria Scienza Geol. de Universite Padova, vol 33, pp 133–145

  • Shervais JW (1990) Island arc and ocean crust ophiolites: contrasts in the petrology, geochemistry, and tectonic style of ophiolite assemblages in the California Coast Ranges. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites: oceanic crustal analogues: proceedings of the symposium Troodos 1987. Geological Survey Department, Nicosia, Cyprus, pp 507–520

  • Shervais JW (2001) Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, vol. 2 (Paper number 2000GC000080), 20,925 words, 8 figures, 3 tables

  • Shervais JW (2008) Tonalites, trondhjemites, and diorites of the Elder Creek ophiolite, California: low-pressure slab melting and reaction with the mantle wedge. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geological Society of America Special Paper 438, pp 113–132. doi: 10.1130/2008.2438(03)

  • Shervais JW, Kimbrough DL (1985) Geochemical evidence for the tectonic setting of the Coast Range ophiolite; a composite island arc–oceanic crust terrane in western California. Geology (Boulder) 13:35–38

    Article  Google Scholar 

  • Shervais JW, Kimbrough DL, Renne P, Murchey B, Hanan BB (2004) Multistage origin of the Coast Range Ophiolite, California and Oregon: implications for the life cycle of suprasubduction zone ophiolites. Int Geol Rev 46:289–315

    Article  Google Scholar 

  • Shervais JW, Murchey B, Kimbrough DL, Renne P, Hanan BB (2005a) Radioisotopic and biostratigraphic age relations in the Coast Range ophiolite, Northern California: implications for the tectonic evolution of the western Cordillera. Geol Soc Am Bull 117(5/6):633–653

    Article  Google Scholar 

  • Shervais JW, Kolesar P, Andreasen K (2005b) Field and chemical study of serpentinization—Stonyford, California: chemical fluxes and mass balance. Int Geol Rev 47:1–23

    Article  Google Scholar 

  • Shervais JW, Zoglman-Schuman MM, Hanan BB (2005c) The Stonyford volcanic complex: a forearc seamount in the northern California coast ranges. J Petrol 46(10):2091–2128

    Article  Google Scholar 

  • Snow CA (2002) Geology of the Cuesta Ridge ophiolite remnant near San Luis Obispo, California: evidence for the tectonic setting and origin of the Coast Range Ophiolite [M.S. thesis]. Utah State University, 150 p

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California. Geol Soc Am Bull 104:1621–1636

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

  • Wasylenski LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotites. J Petrol 44:1163–1191

    Article  Google Scholar 

  • Widom E, Kepezhinskas P, Defant M (2003) The nature of metasomatism in the sub-arc mantle wedge: evidence from Re-Os isotopes in Kamchatka peridotite xenoliths. Chem Geol 196:283–306

    Article  Google Scholar 

  • Witt-Eickschena G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF grants EAR0440255 (Shervais), EAR0440238 (Mukasa) and KOPRI grant PE08120 (Choi). Insightful reviews by Oliver Jagoutz and another reviewer greatly improved the manuscript. Special thanks to Clive Neal and John Shafer for their assistance with the LA–ICP–MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Shervais.

Additional information

Communicated by T.L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 21 kb)

Supplementary material 2 (XLS 38kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean, M.M., Shervais, J.W., Choi, SH. et al. Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA–ICP–MS study. Contrib Mineral Petrol 159, 113–136 (2010). https://doi.org/10.1007/s00410-009-0419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0419-0

Keywords

Navigation